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Preface

The purpose of this book is to introduce new researchers into the field of Bio-Molecular 
Modelling. The field lays at intersection of such disciplines as Biology, Chemistry, Physics, and 
Computer Sciences. It is not surprising that researchers with respective backgrounds are attracted. 

Historically, modelling techniques applied to discovery and development of new bio-active 
compounds, were ligand-based. These are methods of quantitative structure-activity (QSAR) and 
structure-property (QSPR) studies. To date, these methods include multiple techniques. Linear 
regression analysis, support vector machines, random forest, naive Bayes, and artificial neural 
networks are just some examples that utilize massive mathematical apparatus. With introduction 
of protein structure determination methods and exponential increase in computer power, 
structure-based methods of designing bio-active compounds became also available. 

Modelling techniques got fast developing being applied to the challenges of life sciences 
(pharmaceutical, bio-technology, and agricultural sciences). These are search for biologically 
active molecules with targeted properties, development of special purpose proteins for industry, 
and fundamental studies of biological processes at molecular level.

Bio-Molecular Modelling includes various sub-fields. Bio-informatics lays at intersection of 
biology and computer sciences. Chemo-informatics utilizes computer sciences to operate with 
chemical structures. Theoretical bio-physics applies methods of computational physics to biology 
challenges. This way the fields of Bio-Molecular Modelling develop extensively and intensively in 
various directions.

Nova days Bio-Molecular Modelling includes multiple techniques. Methods of homology 
modelling let model three-dimensional structures of proteins based on the sequence of target 
protein and x-ray structural data of the template protein(s). Automated computational docking 
approaches make it possible to study the way small molecules may interact with bio-molecular 
targets. Being utilized to large library of ligands, it gets name of virtual screening. Pharmacophore 
modelling techniques let make pharmacophore models based on the structures of ligands 
or protein-ligand complexes for following pharmacophore-based virtual screening of small 
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molecular ligands. Techniques of Molecular Dynamics simulations let computationally model 
dynamics of bio-molecules in native environment. Atomic-level interactions between parts 
of bio-molecules or their fragments can be studied with Quantum Chemistry approaches. Bio-
Informatics approaches let understand interactions between bio-molecular targets and select key 
ones for Bio-Molecular Modelling.

The listed are not all topics and fields of Bio-Molecular Modelling. However, these are the 
approaches which formed ground for future developments. Multiple methods and approaches 
are arising currently. 

Structurally, this Book “Software and Techniques for Bio-Molecular Modelling” consists of 
three parts: “Software”, “Techniques”, and “Case Studies”.

Modern and powerful software is a key component for Bio-Molecular Modelling. These 
are complex packages, small applications, as desktop as network based. Databases can also 
be considered with software. “Software” – includes small chapters on software packages, and 
algorithms, available as on open-source as on commercial basis. Each article gives information on 
software, algorithms involved, purposes, pros and cons, license terms, references.

Chapters on special-purpose applications are included. These are GROMPALA (a membrane-
implicit modelling method to screen lipid-interacting molecules) by Dr. Laurence Lins; AtlasCBS 
(a graphic tool to map the content of structure-activity databases) by Dr. Cele Abad-Zapatero; and 
Modeller (an application for homology modelling) by Dr. Raghvendra Singh.

Many techniques for Bio-Molecular Modelling, are included into the “Techniques” part of the 
Book. Each chapter includes introduction, background, technique description, references. All of 
the techniques described have been successfully applied to bio-molecular challenges by scientists 
in the field. These are the technique for Homology Modelling: Protein structure prediction using 
molecular homology modelling, by Dr. Luiz Carlos Bertucci Barbosa. Technique for Virtual 
Screening: Structure, shape and electrostatic based virtual screening to discover small molecule 
therapeutics, by Dr. Raman Parkesh. Techniques for Molecular Dynamics Simulations: Introduction 
to the molecular dynamics of biomolecules, by Dr. D. A. Morton-Blake; GPU accelerated molecular 
dynamics simulations in predicting the protein-protein binding affinity from residues interactions 
within the binding surface, by Dr. Vannajan Sanghiran Lee. And the technique for Bio-informatics: 
Knowledge formalization and high-throughput data visualization using signaling network maps, 
by Dr. Andrei Zinovyev.

It is useful for as novice as more experienced researcher to look through a sample study before 
planning personal one. Multiple examples of successful studies in the field of Bio-Molecular 
Modelling are given in a “Case Studies” part of the Book. Experienced scientists have demonstrated 
the way modelling techniques can be applied to different research challenges. Hopefully this part 
of the Book will help a novice researcher to comprehend methods and techniques of Bio-Molecular 
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modelling. These are the Case Studies on various methods for neuro-ligands optimization using 
molecular modelling, by Dr. Anil Kumar Mishra; on virtual screening of DEN-2 non-competitive 
inhibitors, by Dr. Noorsaadah Abd Rahman; on comparative evaluation of docking programs - a 
case study with small peptidic ligands, by Dr. Punit Kaur; on protein Interaction study of novel 
mutants of human Hsp70 and Ad5 motif (PNLVP), by Dr. Salehhuddin Hamdan; on structure 
based drug design in identification of novel androgen receptor antagonist, by Dr. Muthiah 
Ramanathan; on Hepatitis C viral polymerase inhibition using directly acting antivirals - a 
computational approach, by Dr. Abdo A Elfiky; on application of structure and ligand-based drug 
design for finding lead compounds from natural product source: case of influenza targeted, by Dr. 
Muchtaridi; on molecular dynamics of E. coli undecaprenyl diphosphate synthase -  asymmetry in 
a homodimer, by Dr. Irene E Newhouse; and on molecular dynamics simulations and molecular 
docking approaches in endoinulinase chemical modification, by Dr. Homa Torabizadeh.

I am very grateful to all of the Authors and their colleagues, who accepted invitation to 
contribute to this Book. Also I am very thankful to the external reviewers who were very helpful to 
assist in improving the chapters. I am extremely grateful to the company Venture Pharmaceuticals 
Ltd (Belize) which was a Technology Sponsor for all network communications with all of the 
perspective and the current Authors.

Dr. Azat Mukhametov, 

Editor of the Book
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ABSTRACT
In this chapter, we describe an improved version of our previously published Monte Carlo 

method IMPALA, based on an implicit description of the membrane. The implementation of the 
implicit water-membrane forcefield IMPALA into GROMACS molecular dynamics software suite 
is called GROMPALA. The method aims to decrease computational costs compared to explicit 
environment representation in MD simulation. We attend to gain a more accurate description 
as compared to IMPALA by taking advantage of the all-atom molecular dynamics algorithms. 
GROMPALA is designed to get insight into molecule-membrane interactions taking place 
on reasonable time scales, notably to screen large sets of peptides, than can serve as primary 
selection tool for further atomistic molecular dynamics simulations.

Keywords: Molecular Modelling; Amphipathic Peptides; Implicit Membrane; Hydrophobicity

Abbreviations: MD: Molecular Dynamics, MC: Monte Carlo, ASA: Accessible Surface Area, VdW: 
Van der Waals, MCe: Mass Centre; GB: generalized Born; MAG: Magainin; DDK: Dermadistinctin K; 
MLT: Mellitin; TM: Transmembrane

GROMPALA: A Membrane-Implicit Modelling 
Method to Screen Lipid-Interacting Molecules
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INTRODUCTION
Biological life sciences such as pharmacology, toxicology, bioindustry or cosmetology depend 

on knowledge about how membrane-related metabolism, transport and disruption processes 
take place. Proteins interacting with the membrane are essential in those phenomena, are present 
in all cells and represent more than one third of the genome. Understanding protein-membrane 
interactions is hence of fundamental importance. 

Over the last decade, molecular dynamics (MD) has gained attractiveness in that domain. MD 
is a valuable tool to study interactions between proteins or peptides and membrane because 
it gives access to the atomistic details of the interaction as well as energetics and dynamics of 
the observed processes [1]. MD is based on the use of the motion equations of Newton and on a 
forcefield to simulate how an ensemble of atoms moves relative to each other. Forcefields include 
potential equations and parameters to reproduce stretching, bending and rotations of covalent 
bonds, to maintain planarity and chirality of several groups as well as to simulate Van der Waals 
and electrostatic interactions. The parameters which depend on defining atom types have been 
calibrated to reproduce a wide range of experimental values. MD studies have proven to be able 
to reproduce biophysical and biological processes, for solutes in uniform solvent, as well as for 
membrane environments. However, due to the high computational cost of molecular mechanics 
simulations using explicit membrane, there is a growing interest for implicit representation of the 
lipid bilayer. 

A wide range of models for the interaction with implicit membranes have been developed 
and are the object of several reviews [2,3]. These models can be classified as knowledge-based 
[4–10] or physics-based [11–14]. The former are usually based on experimental data for the 
free energy of transfer of small molecules, typically amino acids, from water to apolar media, 
e.g. octanol [5,6,9]. Atomic solvation parameters are derived from these data and they are then 
often used with atomic solvent accessible surface area and tuned according to the atomic position 
in a membrane slab to compute the solvation energy of bigger molecules, such as peptides or 
proteins.  The methods give optimal positions for the molecule inside the membrane which will 
be compared with experimentally known orientation for parametrization. Knowledge-based 
methods can also be combined with forcefields to include Van der Waals, electrostatic and torsion 
energy in the energy function and sample the protein conformational space [4,9]. The method 
presented in this paper is part of these methods, as described further below. 

For the physics-based methods, the membrane protein interactions are decomposed into 
electrostatic and nonpolar contributions. For the electrostatics, a membrane can be approximated 
as a region with low dielectric constant, in contrast to water which has a high dielectric constant. 
This can be described with the Poisson-Boltzmann (PB) theory [15]. While several groups have 
used this model [10,12], it is computationally expensive and difficult to use for MD simulations 
[16]. Several faster methods have hence been developed [17,18] that mainly use the Generalized 
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Born (GB) approach, which has been first introduced by Still et al [19]. The GB equation is 
derived from the Born model [20], a solution of the PB equation for a charged spherical solute 
in a solvent with different dielectric constant. The GB approximation expresses the electrostatic 
solvation energy for a set of charged spheres, representing the biomolecule, and accounts for 
the effect of the dielectric medium on the pairwise interactions of charged particles [19]. The 
key point is the calculation of the sphere radius, named Born radius, because it depends on the 
position and volume of all the other atoms in the solute [21]. The Coulomb field approximation is 
used to compute Born radii [3]. However, as the membrane is modelled as a layer with different 
dielectric constants, the GB approach needs to be adapted. In the first membrane model based 
on GB, proposed by Spassov et al [22], the dielectric constant is the same within the membrane 
and for the protein. A procedure to handle multiple dielectric environments with GB was then 
proposed by Feig et al.[16]. For the nonpolar contribution, it mainly corresponds to the cost of 
cavity formation and is usually approximated by a term proportional to the solvent accessible 
area [2].  

In our lab, we have developed a Monte Carlo method using an implicit description of the 
membrane, called IMPALA [6]. The forcefield was parameterized for mimicking a membrane 
in aqueous environment by considering 1) the hydrophobic effect between the membrane and 
a solute and 2) the perturbation effect of the solute on the lipid acyl chain organization. Both 
energy restraint terms depend on the solvent accessible surface area and a membrane potential 
which mimics the hydrophilic profile of the lipid bilayer. While being very simplistic, this method 
notably allowed to accurately study and classify different lipid-interacting peptides [23] and to 
predict entire membrane protein orientation into lipid bilayers [24,25]. The main limitation of 
the method resides in the fact that the conformation of the peptide is not modified following its 
insertion into the implicit membrane.

In this chapter, we describe the implementation of the implicit water-membrane forcefield 
IMPALA into GROMACS molecular dynamics software suite. We call the resulting hybrid method 
GROMPALA. The method aims to decrease computational costs compared to explicit environment 
representation in MD simulation. We attend to gain a more accurate description as compared 
to IMPALA by taking advantage of the all-atom molecular dynamics algorithms. GROMPALA is 
designed to get insight into molecule-membrane interactions taking place on reasonable time 
scales, notably to screen large sets of peptides, than can serve as primary selection tool for further 
atomistic molecular dynamics simulations.

DESCRIPTION OF THE GROMPALA METHODOLOGY
We have implemented the algorithm from Ducarme et al [6] into Gromacs software [26,27]. 

In the Impala membrane model, two pseudo energy terms are considered: a) the hydrophobic 
energy restraint (eq.2) and b) the lipid perturbation energy restraint (eq.3). Both terms depend on 
atomic transfer energy and accessible surface area (ASA). A Monte Carlo (MC) procedure is used 
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to explore optimal insertion configurations. The conformation of the lipid-interacting molecule 
is considered to be rigid and the membrane hydrophobicity is modelled by an empirically 
parameterized symmetric sigmoidal curve, C(z) (eq.1):

     

      

(equation 1)

where α is a constant equal to 1.99; z0 corresponds to the middle of polar heads and z is the 
position in the membrane. 

The hydrophobicity of the membrane for the interaction is simulated by Epho:

 

      (equation 2)

Where N is the total number of atoms, S(i) the accessible surface to solvent of the i atom, Etr(i) its 
transfer energy per unit of accessible surface area and C(zi) the zi position of atom i.

The perturbation of the bilayer by insertion of the molecule was simulated by the lipid 
perturbation restraint (Elip):

  

      (equation 3)

where alip is an empirical factor fixed at 7.53624 Kj.mol-1Å-2 and Klip, a weight factor comprised 
between 0.1 and 1.

In our Impala implementation to Gromacs (Grompala), the MD routine replaces the original 
MC approach. We have adapted the values of accessible surface area and VdW radii for each 
atom type of Grompala. A performance optimized program routine for the calculation of solvent 
accessible surface areas has been implemented to the Gromacs core program by modifying the 
Gromacs tool g_sas, based on the DCLM method [27]. After calibration, ASA probe radius was set 
to 0.115. Both parameters (ASA and VdW radius) were associated to the corresponding atom type 
definition of the OPLS-AA forcefield [28]. The transfer energy values were taken from [29].

Preliminary energy minimization has been carried out in absence of Impala forcefield. The MD 
part of the simulations was done without periodic boundary conditions at 323 K for 10 ns by steps 
of 2 fs. A dielectric constant of 1 was used and Coulomb and Van der Waals have been computed 
without cutoff, since the systems studied are small. Each calculation is repeated 7 times. 
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To test and calibrate Grompala, we investigated four amphipathic peptides and one 
transmembrane domain that have been described in the literature for their interaction with lipids, 
notably by NMR. Concerning the amphipathic helical peptides, Magainin2 (MAG) (PDB ID: 2MAG) 
and Dermadistinctin K (DDK) (PDB ID: 2JX6) are antimicrobial peptides that have been shown 
to form amphipathic α-helices oriented parallel to the membrane surface [30,31]; Magainin has 
been previously used as test peptide for IMPALA [6]. The Influenza hemagglutinin HA2 fusion 
peptide (PDB ID: 2XKA) has been reported to be a helical hairpin at the lipid/water interface [32]. 
Mellitin (PDB ID: 2MLT) is a highly hemolytic helical peptide from Bee venom. It has been shown 
to be able to adopt a wide range of orientations in the membrane, from parallel to the membrane 
surface to a transmembrane configuration [33–35]. This peculiar behavior has also been observed 
with IMPALA [6] and is hence a good check for Grompala. To compare those amphipathic helices 
to transmembrane domains, the M3 segment of the alpha subunit of the nicotic acetylcholine 
receptor from Torpedo californica has been chosen (PDB ID: 3MRA) [36].

CALIBRATION OF KLIP

Previously, we observed that the lipid perturbation restraint had to be weighted for some 
molecules, since in some cases, molecules interacting experimentally with the membrane 
were unable to insert into the IMPALA bilayer. The weighting factor Klip allows restoring lipid 
insertion with values varying between 0.1 and 0.8 (unpublished data). For Grompala, we tested 
Klip values between 0.1 and 0.8 for the different peptides.  The best results were obtained with 
values between 0.45 and 0.65 for all the molecules (data not shown) and we show the results 
obtained for Klip=0.5 for all the peptides.

PEPTIDE BEHAVIOR IN THE GROMPALA MEMBRANE
Different parameters have been analyzed for the five peptides: the conservation of the helical 

conformation along the simulations, the position of the mass centre (MCe) and the orientation 
(tilt) of the peptide into the implicit membrane. For the helical conformation calculation, the 
DSSP method is used [37]; the orientation of the peptide is defined by the axis between the MCe 
of the 3 first and 3 last Cα of the helical part of the peptide only. For DDK peptide, the tilt was 
calculated using the 7 first and 7 last atoms, whatever the conformation is (the peptide is mainly 
destructured-see below).

For the antimicrobial peptides DDK and MAG that have been found experimentally to orient 
on the surface of the membrane, they are both oriented mostly parallel to the lipid plane with 
Grompala (Figure 1A and Figure 2A respectively), with insertion angles around 90° and around 
60°-70° towards the membrane normal, for DDK (Figure 1D) and MAG respectively (Figure 2D). 
Both peptides have their mass centre located in the hydrophilic interface, at 11-12 Å from the 
bilayer centre (Figure 1C and Figure 2C). This is in very good agreement with the experimental 
data [30] and with IMPALA calculations (not shown).
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Figure 1: Grompala simulation of DDK peptide.

A. Final position of the peptide into the implicit membrane. The yellow plane represents the 
centre of the bilayer, the orange plane, the interface between the lipid polar headgroups and 
the hydrophobic tails and the green plane, the interface between water and lipid polar heads.

B. Evolution of the secondary structure of each residue of the peptide along the simulation (10 
ns). Blue: α helix; green: bend, yellow: β structure; white: coil; mauve: 5-helix; grey: 3-helix.

C. Evolution of the mass centre position of the peptide along the simulation. The planes are the 
same as in A. The bilayer is symmetric and the thickness is ±18 Å.

D. Evolution of the angle of insertion (°) of the peptide (as defined in the text) along the simulation.
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Figure 2: Grompala simulation of MAG peptide-same representation as for Figure 1.

Figure 3: Grompala simulation of MLT peptide-same representation as for Figure 1.
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Figure 4: Grompala simulation of HA2 fusion peptide-same representation as for Figure 1.

Figure 5: Grompala simulation of M3 TM segment-same representation as for Figure 1.

The peptide conformation was also followed during the simulation. Figures 1A and C shows 
that DDK is partly helical (residues 15-21 and 29-32), but the N-terminal part is destructured. For 
MAG (Figure 2A and Figure 2B), a helical structure is observed at residues 5-11 in few simulations; 
in the other calculations, the MAG peptide is even more destructured (data not shown).
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For mellitin, the results are presented on Figure 3. We can clearly see that the helical structure 
is pretty well conserved, with the N-terminal part being in turn (Figure 3A,B). As previously 
observed by Impala [6] and also experimentally [33–35], the insertion angle can adopt a larger 
array of values, from 100 to 150° (Figure 3D), the mass centre being located at the interface 
between the hydrophobic tails and the hydrophilic lipid headgroups (around 10-11 Å) (Figure 
3C).

The HA2 peptide that shows a helical hairpin structure experimentally [32], is oriented 
parallel to the membrane interface (Figure 4A) with its mass centre around 12 Å (Figure 4C), the 
tilt staying at 90° during the whole simulation (Figure 4D). The helical structure is preserved for 
the second helix (residues 16 to 22) (Figure 4B), and the overall hairpin configuration is observed 
(Figure 4A).  

For 3MRA (Figure 5), the results are in very good agreement with the experimental behavior, 
i.e.  a transmembrane insertion (Figure  5A) that appears in the few first nanoseconds of the 
simulation (MCe position around 10 Å- Figure 5C and an angle around 180°- Figure 5D). The 
helical conformation is preserved along the whole peptide for the whole simulation (Figure 5B).

CONCLUSIONS AND PERSPECTIVES
The results of Grompala for the four amphipathic peptides are encouraging, since an interfacial 

position is predicted for all of them. For mellitin, our results are in agreement with the fact that 
this peculiar peptide can adopt a wider variety of positions into the membrane, suggesting that 
our method is adapted to distinguish between strictly interfacial peptides and those having more 
specific features. It also clearly distinguishes between amphipathic and transmembrane peptides, 
as shown for 3MRA.

Concerning the structure of the peptide along the simulations, the helical conformation is not 
as well conserved as it would by with atomistic molecular dynamics approach, especially in the 
case of DDK and MAG. The former is defined by NMR as a 33-residues helical structure in the 
presence of DPC micelles, with the 5 N-terminal amino acids being coiled, and with a distorsion 
around residues 10-16 [30]. In water, the peptide is destructured, as shown by CD measurements 
[30]. In the Grompala simulations, the 1-14 N-terminal domain is not structured as an helix, and 
the 22-28 residues are configured as a kink. In the same way, Magainin is relatively destructured 
as compared to NMR results [31]. This should be due to the fact that the peptide lays in the 
vacuum when not inserted into the implicit membrane. For some peptides, this could induce 
a destabilization of the hydrogen bonding maintaining the helical conformation, since both 
peptides are indeed destructured in water (i.e. not in a hydrophobic medium). When inserted at 
the interface, the duration of the simulation might not be enough to allow reappearance of helical 
structure. Future investigation in that direction should help to improve the structural stability of 
the peptides in the Grompala methodology. 
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In conclusion, by using the gold standard molecular dynamics approach combined to the 
implicit membrane representation of our home-designed IMPALA methodology, we built up an 
original and sufficiently fast method that should help to predict and screen peptide membrane 
behavior. This could be the starting point to subsequent MD simulations that are more time-
consuming.
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ABSTRACT
The number of databases containing biologically active compounds and the bioactivities 

towards the corresponding targets (SAR-Databases) has grown substantially in the last decade. 
Concurrently, the number of bioactivities and targets has also grown dramatically following the 
extensive and growing data available in the medicinal chemistry and biological literature. The 
web resources and tools have expanded the range of possibilities on how best to present this 
myriad of data entries to the drug discovery community. Naturally, the connection between the 
chemical space of ligands and the biological space of targets is the experimentally determined 
affinities estimated by a variety of assays (Ki, IC50, Kd, MIC and others). 

In the past few years, the medicinal chemistry community has begun exploring the use of 
alternative variables (also referred to as ‘combined variables’) to better understand the inter-
relation between the chemical and biological spaces. The concepts of ‘Ligand Efficiency’ and 
‘Ligand Efficiency Indices’ are now commonly accepted as variables and defined as a combination 
of affinities (typically in the numerator) with certain physico-chemical properties of the ligands 
(normally in the denominator). Efficiency indices based on a subtraction definition (e.g. affinity 
minus a term related to certain properties of the ligand) are also widely used.

AtlasCBS: A Graphic Tool to Map the Content 
of Structure-Activity Databases
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We present the use of variables related to the concept of Ligand Efficiency Indices to map the 
content of SAR-Databases in a series of Cartesian planes that combine three critical variables in 
drug discovery (affinity, size and polarity) into easily interpretable ‘efficiency planes’ to guide 
the drug discovery process. The series of planes, using different physico-chemical variables at 
different scales resembles an atlas of chemico-biological-space (AtlasCBS).

The existing web tool available at the European Bioinformatics Institute is briefly discussed 
and illustrated. The limitations of the current application are also examined. A concrete proposal 
is made to convert the AtlasCBS concept into an effective personalized application using the 
virtual machine environment MyCHEMBL combined with open access Chemoinformatics tools 
such as KNIME.

Keywords: SAR-Databases; Ligand Efficiency Indices; Chemoinformatics; Chemico-Biological 
Space; Drug Discovery Software; AtlasCBS

Abbreviations: SAR-Databases: Structure Activity Relationship Databases; AtlasCBS: Atlas of 
Chemico-Biological Space; LE: Ligand Efficiency; LEI(s): Ligand Efficiency Indice(s);  BEI: Binding 
Efficiency Index; SEI: Surface Efficiency Index. LEM: Ligand Efficiency Metrics; PDB: Protein Data 
Bank; BindingDB: Binding Data Base; PDBBind: Protein Data Bank Binding Data Base, a subset of 
protein-ligand complexes extracted from PDB; ChEMBL: Chemistry (small molecule database) of 
the European Molecular Biology Organization. KNIME: Konstanz Information Miner, open source 
data analytics, reporting and integration platform.  WOMBAT and WOMBAT-PK: Bioactivity 
Databases for Lead and Drug Discovery.  SQL: Structured Query Language, an international 
standard for database manipulation

INTRODUCTION
The purpose of this brief note is to introduce the concept of a web tool named AtlasCBS 

developed to facilitate the extraction, mapping, representation and analysis of the content of 
SAR-databases, which contain extensive collections of chemical compounds (ligands), and the 
associated data relating those compounds to the biological entities (targets) against which 
the chemical matter has some activity. These affinity or activity data are predominantly (if not 
exclusively) experimental in nature, as measured by some experimental assays. Because these 
databases relate the structure of the compounds to their biological activity, they will be referred 
to as Structure-Activity Relationship Databases (SAR-DB, or SAR-Databases).

This contribution will present the numerical and algebraic relationships among the different 
variables used in the current implementation, based on Ligand Efficiency Indices (LEIs) and 
Ligand Efficiency Metrics (LEM).  The usage of the current web server will be discussed as well as 
its limitations.  Within that framework a simple, effective and practical way to use these ideas and 
concepts individually will be presented and illustrated, using the content of the public databases 
in combination with open source modules to create workflows that can be independently tailored 
for specific needs within the drug-discovery community.
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SAR-DATABASES
The availability of extensive Structure-Activity-Relationship data for a wide variety of 

biological targets in the literature and in experimental high-throughput centers and installations 
in the drug discovery community, made it imperative the development of databases that could 
store, annotate and easily retrieve the information. Within a period of a few years several 
vigorous databases originated that are now well established in biomedical community. Among 
them, BindingDB [1-3], PDBBind [4,5], ChEMBL [6], PubChem [7] and WOMBAT [8] are quite 
reputable, and with the unique 3-D flavor of the Protein Data Bank (PDB) [9,10] form the core of 
critical resources for the future of drug discovery.  The database DrugBank [11,12] has a unique 
position in the community but cannot be considered to be exclusively or predominantly a SAR-
Database. DrugBank focuses more on the clinical/pharmacological aspects of the compounds and 
therapies and does not contain any significant affinity data. 

Naturally, all these databases are now well entrenched and do have a critical presence as 
Internet sources from where they derive their tremendous power and versatility.  Concurrently, 
the absolute growth as revealed by the total number of entries, and the development rate of these 
resources is staggering. For example, ChEMBL20:  10,774 targets, 1,715,667 compound records, 
1,463,270 distinct compounds and 13,520,737 activities extracted from nearly sixty thousand 
publications (https://www.ebi.ac.uk/chembl/). Some of the details have been presented in more 
extensive publications as well as some of the issues now facing due to the expanded rate of data 
deposition [13]. Among them are: redundancy, complementarity vs. uniqueness, private vs. public 
databases and access, quality of the data, inclusion of errors as well as others. From the viewpoint 
of this brief communication a critical issue is to find the ‘best’ representation of the available data.

In a simplistic way, databases are basically collections of interconnected numbers in groups 
of internal tables. In a way, it is as if we had a list of latitudes and longitudes of an immensely vast 
chemico-biological space (CBS). Using a historical perspective, this collection could be considered 
to be similar to the data collected by Thyco Brahe (circa 1600) relating the planets to the orbits 
that they circumnavigate in relation to the point of observation, Earth. By themselves, the list of 
numbers does not provide any clue as to nature of the orbits. In the same way that a list of x,y 
coordinates does not reveal directly the shape of a circumference or geometrical figure. It is only 
when we ‘map’ these numbers in a certain frame of reference in Cartesian (or polar) coordinates 
that we begin to understand the shapes, trajectories, paths and orbits of the planets.

This is what the AtlasCBS concept and application does in the context of chemico-biological-
space. It highlights the relationship between targets and ligands in a series of efficiency planes 
or charts. The collection of maps and charts (in different scales and using different variables) 
is what suggests the idea of an atlas-like representation or an atlas of chemico-biological-space 
(AtlasCBS).
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ALTERNATIVE VARIABLES IN MAPPING THE CONTENT OF SAR- 
DATABASES

In spite of the enormous amount of data contained in the existing SAR-Databases the key 
element is a measure of the affinity of the ligand (chemical entity) towards the biological target 
(typically a protein). The variety of assays from which those data are obtained are also included 
(i.e. in vitro, in cell, etc.) and in most cases a cross-referenced to the original publications.  Most 
SAR-Databases (for example ChEMBL) now contain (or are easily calculated via the SMILES 
representation) a large set of physico-chemical properties: Molecular Weight (MW), Polar Surface 
Area (PSA), logP, logD among others. 

Most of them are constructed based on relational databases (SQL, MySQL or related) with a 
large number of interconnected tables via primary keys. Yet, the key variable to analyze the data 
is essentially one of several possible affinity variables (Ki, IC50, Kd and related). 

Undoubtedly, this is the key variable that links the chemical and biological spaces. A ligand, by 
the fact that has some activity towards a concrete biological molecule (typically a macromolecule: 
protein, nucleic acid, lipid(s), etc.) connects the two domains: chemical and biological. 

The underlying theme of this article is that using certain ‘alternative variables’, and particularly 
variables that combine the affinity with other physico-chemically relevant properties of the 
ligands, it is much easier to represent, interpret and analyze the content of those SAR-Databases. 
In turn, this ease of interpretation will simplify the mapping of CBS and the navigation in the 
tumultuous waters of drug-discovery facilitating productive, efficient and successful expeditions 
in drug-discovery.

This concept has been highlighted and discussed recently using certain proprietary software 
tools currently available to the community [14].

ATLASCBS: THE ESSENTIAL CONCEPT
The initial concepts and publications related to Ligand Efficiency (LE) were prompted by the 

notion of quantifying the quality of fragments, as seen and evaluated in fragment-based drug 
discovery (FBDD). This was the milieu within which Hopkins and colleagues introduced in 2004 
the initial definition of LE (see Table 1) as the quotient between the free energy of binding (ΔG) 
and the number of non-hydrogen atoms (NHA) of the ligand. It was introduced basically as a size-
related efficiency.
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Table 1: List of Ligand Efficiency (LE) and Ligand Efficiency Indices (LEIs) definitions 
relevant to the AtlasCBS application.

aThe examples refer to the extensive table presented in Abad-Zapatero (2013) [13] using a 
hypothetical compound with 1 nM Ki (Kd), affinity; MW = 333 Da.; PSA= 50 Å2; NPOL =6, NHA=25. 

If MW = 333, and NHA=25, the approximate mean molecular weight of a typical non-hydrogen, 
medicinal chemistry, atom is ~13.3 [18]. Constants: RT= 0.594.

Seeing the limitations of atom counting vs. MW to assess the size of a ligand, Abad-Zapatero 
and Metz introduced in 2005 the concept of Binding Efficiency Index (BEI) [15], using only the 
pKi (or equivalent affinity quantity) in the numerator and the MW scaled to a thousand (for 
convenience) in the denominator. In addition, they suggested an analogous polarity-efficiency 
combining the same numerator (pKi or equivalent to make it consistent) divided by the polar 
surface area (PSA) of the ligand scaled down to one hundred. These pair of combined variables 
provided two complementary variables (in approximately the same scale) to judge the quality 
of compounds and fragments and also to represent three critical variables in drug discovery 
(affinity, size, polarity) in a Cartesian plane (Table 1), preferably SEI (x) and BEI (y).

The concept of an atlas-like representation begins to emerge if one realizes that the ratio of 
the LEIs defined above (BEI/SEI; y/x) depends only on the properties of the ligand, i.e. BEI/SEI 
= 10 • PSA/MW (Table 1). Thus, one can think of the points in the SEI, BEI planes as having an 
angular coordinate (slope of the lines) given only by the physico-chemical properties of the ligand 
(PSA, MW) and a radial coordinate corresponding to the affinity of the ligands towards specific 

Variable Name Definition Example Valuea Equation
LE ΔG/NHAC 0.50 [1]

BEI p(Ki), p(Kd), or p(IC50)/
MW(kiloDaltons) 27 [2]

SEI p(Ki), p(Kd), or p(IC50)/(PSA/100 Å2) 18 [3]
Slope of lines: 10(PSA/MW). Algebraic description: BEI = 10(PSA/MW) SEI;  

Description: Efficiency plane based on macroscopic physico-chemical properties of the ligand: PSA, MW.
NSEI -log10 Ki/(NPOL) = pKi/NPOL(N,O) 1.5 [4]
NBEI -log10 Ki/(NHA)= pKi/(NHA) 0.36 [5]

Slope of lines: NPOL/NHA. Algebraic description: NBEI = (NPOL/NHA) NSEI. 

Description: Efficiency plane based on atomic properties of the ligand. 

Slope of the lines is always a rational number given as NPOL/NHA.
nBEI -log10[(Ki/NHA)] 10.25 [6]
mBEI -log10[(Ki/MW(KiloDaltons)] 11.5 [7]
NSEI -log10 Ki/(NPOL) = pKi/NPOL(N,O) 1.5 [4]

Slope of lines: NPOL.  Algebraic description:
nBEI = NPOL*NSEI + log10(NHA); [8]
mBEI= NPOL*NSEI + log10(MW); [9]

Intercept: log10(NHA) or log10(MW) respectively.
mBEI -log10[(Ki/MW] 11.5 [10]
SEI p(Ki), p(Kd), or p(IC50)/(PSA/100 Å2) 18 [3]

Slope of lines: PSA/100. Algebraic description: mBEI = (PSA/100) SEI + log10(MW)
Intercept: log10(MW).
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targets. Highly polar compounds will map along lines of steep slopes (large PSA/MW) and very 
size-efficient compounds will map far away from the origin. Polarity increases counterclockwise 
for the different compounds, from nearly horizontal slopes (hydrophobic) to nearly vertical lines 
(very polar).  This was initially described in the analysis of compounds for PTP1B as related to 
compounds for other less polar targets [16].

Using this basic concept, several other combinations of variables were explored and the 
notion of an atlas-like representation was published in 2010, presenting a very intuitive and easy-
to-understand combination of variables, referred to as (NSEI, nBEI; see Table 1 for definitions). 
Details can be found in the initial publication [17] and also in the more recently extended 
description of these ideas [13]. 

Briefly, NSEI is an efficiency index related to the number of polar atoms (understood as the 
sum of Nitrogens and Oxygens: NPOL=N+O) and nBEI is a variation of the BEI index, where the 
denominator is NHA (as in the original Hopkins publication [18]) but the logarithm operation is 
taken after the ratio of affinity to the number of non-hydrogen atoms (see Table 1 for definitions):

NSEI =  -log Ki/ NPOL (N+O) = pKi / NPOL       (equation 4)

nBEI =  -log [(Ki/NHA)]           (equation 6)

From these two equations, the appearance of Cartesian planes (NSEI, nBEI; x,y)  can be inferred 
by eliminating the affinity variable from the two equations (Abad-Zapatero, 2013 [13]. Appendix 
A). Substitution of the value of log Ki from equation 4 in equation 6, yields:

nBEI = NPOL • NSEI + log (NHA)     (equation 11)

This linear equation in y (nBEI) and x (NSEI) shows that the ligands present in the dataset 
will be arranged in the planes in lines of slope NPOL (=N+O) and intersects log (NHA). More polar 
compounds will be along lines of increasing slope, the most efficient being further away from the 
origin. This appearance has been illustrated in Figure 1.
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Figure 1: PDBBind in AtlasCBS. The content of a limited SAR-Database (PDBBind 2007) in 
the NSEI, nBEI (x,y) plane to highlight the distinct pattern of lines of slope NPOL and intersect 

log10(NHA), as indicated in equation 11.  The polarity increases counterclockwise as NPOL 
increases. The different lines were modeled statistically using the statistical software JMP [17] 

and the corresponding colors for each value of NPOL are shown on the right panel.

THE ATLASCBS WEBTOOL
The web tool was designed and implemented as a proof of concept having the most essential 

capabilities to make it practical. Details have been published and will be reviewed here briefly 
only to provide the basis for the introduction of the new tools using the KNIME workflows in the 
next section.

The design architecture is based on three layers: database, application server and client. The 
application is between the client and the database preventing direct access to the database by the 
client. The database server is MySQL(v.5). The data were extracted from the three SAR-databases 
(BindingDB, PDBBind, and ChEMBL) using an off-line custom Java application that extracts the 
target, molecule activity (Ki, IC50 or Kd) and calculates the basic properties needed (MW, SMILES, 
PSA, NHA, and NPOL) to compute the ligand efficiency indices. This database is interrogated by 
the client via the Java Virtual Machine (JVM) server, resulting in different plots and maps as well 
as other options described in the publications. Of notice is the capability of accessing the affinity 
data from the compounds associated with a specific target by entering the PDB access code of the 
protein-ligand complex. 

The entry portal and a few snapshots of different screens introducing the webserver 
application are shown in Figures 2-4. The entry portal contains five tabs shown in Figure 4 (upper 
left). Briefly, their functionalities can be described as follows.
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Figure 2: Mapping of Neuraminidase in efficiency space.  Example of the AtlasCBS 
mapping of the data available for Neuraminidase within the Map Viewer window. Three 

different datasets are represented (see working window in the center right) from BindingDB. 
One of the sets was extracted entering the PDB code 1A4G (see the Add PDB source window) 

that corresponds to the complex of Neuraminidase and Zanamivir.

Main. Contains the basic information about the application and its purpose with references, 
contact information and entry to the Help tab.  The application opens on a register (login) 
window (Figure 4) but it is not necessary to register unless the user wishes to upload personal 
data. Clicking on Main reverts to the main entry portal with basic information.  

Map Viewer. This is the central element of the AtlasCBS server (Figs. 2,4). The page contains 
a plotting window (upper left) with the various definitions of LEIs below (BEI, SEI, etc.) and five 
major tabs: Selection, Viewer, Data, Filters and Exports at the top.  There are three minor grey 
tabs below that are used to add/remove targets and data to/from the map window (see below). 
The Data tab is auto selected (whitened) upon opening and shows the various databases available 
at the time the application was installed: BindingDB, PDBBind and ChEMBL. Upon registering a 
‘Userset’ database will also be available. The data in those databases have been extracted from 
the databases as indicated above and organized in the internal MySQL database that is part of the 
application. 

For each database, the target, organism and type of affinity data available (Ki, IC50, Kd are 
considered only) are visible. After selection, one needs to press the Add Source tab to include 
the selection in the working window and a plot of nBEI vs. NSEI is presented by default. This is 
considered to be the simplest efficiency plane to interpret, as explained above. Obviously, other 
planes can be also seen by changing the x,y axes opening the Viewer tab. The definition of the 
various variables is listed on the lower part of the map panel.
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The response will be slower for targets and organism that are heavily populated in the 
databases, such as HIV-1 Protease with over a thousand (1346 in the current version) entries 
for human immunodeficiency virus type 1, Ki values (Figure 3). The other tabs (Remove, Show/
Hide) permit deleting a set from the working window and display or blanking off the plot of that 
particular set after selection, respectively. The colors of the different target-ligand pairs can also 
clicking on the ‘Set color’ square button after selecting the appropriate data set. 

A particularly useful addition to the server application that was added in collaboration with 
the PDB is the possibility of accessing (plotting) data related to a specific target and compound 
directly via the PDB entry code. Below the working window there is a ‘From PDB’ space that can 
be used to enter a PDB access code to extract data for the available set of compounds for a certain 
target connected to the 3-D structure available in the PDB. This feature can be tested by using 
the PDB access code ‘1A4G’ and pressing the ‘Add PDB source’. Almost immediately, the target 
Neuraminidase B-458-Influenza virus will appear in the working window and the compounds 
will be displayed on the corresponding NSEI-nBEI plot with the annotation corresponding to the 
location of ‘Zanamivir’ in the plane (Figure 2).

Unfortunately, due to the limitations of the content of the existing tables in the server database, 
not all PDB entries codes can be accessed so effectively. A suitable message will appear to alert 
the user if the search failed to extract any affinity data from BindingDB. Examples are presented 
in Figures 2 and Figure 3.

Figure 3: Mapping of HIV Protease and Reverse Transcriptase. Map viewer page of the 
AtlasCBS server after using the Add PDB source option for PDB codes 1OHR (Nelfinavir, HIV 

Protease) and 1FK9 (Efavirenz, HIV Reverse Transcriptase) within the Selection option that displays 
the structure of the compound last hit. Colors were reset with the set color option. The wide range of 

overlapping chemical space encompassed by both targets can be appreciated.
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Login. Is required if the user wishes to upload proprietary data to view it in the context of 
what is available in the publicly available databases for the target of interests. Upon login in, the 
new database ‘UserSet’ will be available in the data window after the ones currently available. 
The selection process and mapping in the different planes will be same as the required for the 
pre-existing public databases.  After Login this tab is replaced by Manage Data (see Figure 2) and 
allows the uploading of user data into the UserSet database that appears after the core databases 
contained in the AtlasCBS. Details of the input format to upload data are given in the Help tab and 
in the publications [13].

Help. Basic information on how to use the AtlasCBS server is available here.

About. Contains information related to the institutions, people and supporting institutions 
that were involved in the AtlasCBS project. 

It is impossible in this brief overview to illustrate or even introduce all the functionalities of 
the current AtlasCBS server. The few images (Figures 2-4) discussed have been added to illustrate 
the discussion. The interested reader is referred to the original publication describing the web 
tool application [19] and is encouraged to use the application server https://www.ebi.ac.uk/
chembl/atlascbs/intro.jsp.

Figure 4: Close-up of the region of chemico-biological-space containing drugs against 
the HIV Protease. This window was selected and scaled-up with the mouse from the previous 

figure, after blanking the Reverse Transcriptase compounds. The migration in the efficiency 
from the early ‘peptide mimetic’ (Saquinavir, Ritonavir and Lopinavir) compounds towards the 
more ‘drug-like’ (Nelfinavir or Tipranavir), while maintaining or improving the size-efficiency, 

can be seen. Figures 3-4, adapted from (Abad-Zapatero, 2013) [13].

https://www.ebi.ac.uk/chembl/atlascbs/intro.jsp
https://www.ebi.ac.uk/chembl/atlascbs/intro.jsp
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USAGE
The universes of chemistry and biology are overwhelming. Understanding, absorbing or 

even digesting the myriad of biologically active chemical entities is extremely difficult. However, 
mapping them in relation to the targets upon which they act and ranking them according to their 
individual physico-chemical properties creates images that are easier to interpret. This is the 
power of the AtlasCBS notion and even though the current implementation has limitations, the 
concept has merit. The author has found the webserver particularly useful at two levels. First, 
it is convenient to have an overview of the content SAR-data available in the most prominent 
databases. This has been illustrated in the publications, particularly in the monograph focused 
on the use of efficiency indices to map chemico-biological space [13]. The plots produced by the 
server give a rapid birds-eye view of the chemical matter available for each particular target and 
an easy way to assess the quality of the available compounds in terms of three key variables: 
affinity, size and polarity. Consistently, it is found that compounds that correspond to marketed 
drugs typically occupy the upper right quadrant of the plots, where both the efficiency-per-size 
and efficiency-per-polarity are optimized. Since the databases contain affinity value for other 
related targets (often mutants, or homologous targets in different organisms), frequently is also 
found that the same compound has been tested for efficacy or specificity in other targets. Given 
the definition of the NSEI, nBEI (x,y) variables, the same compound will appear along the same 
line (same slope NPOL, log10[NHA]) for different targets, with the intended target occupying 
the position furthest from the origin (highest affinity) and the ‘anti-target’ the lowest, closest 
to the origin. The Cartesian distance between the two can be used as a quantitative measure of 
specificity. 

In addition, the analysis of limited sets within those databases and other publications, 
for instance the ‘lead-drug’ set analyzed by Perola (2010) [20], has suggested that within the 
efficiency planes produced by the AtlasCBS server it is possible to ‘extract’ a general direction, 
like a ‘compass bearing’, to guide the drug-discovery process for various targets. I am referring to 
a general ‘North-East’ direction in the efficiency planes defined by polarity-efficiency (x-axis) and 
size-efficiency (y-axis). Moving towards the NE, the successive compounds move towards regions 
of chemico-biological space where the three-variables (affinity, size and polarity) are optimized 
and result in compounds with high probability of being successful upon further development. 
Specific examples of the use of the AtlasCBS server for these applications can be found in Chapters 
7,8 of Abad-Zapatero, 2013 [13].

LIMITATIONS
Inevitably, the current implementation has limitations that need to be addressed in order 

to take the AtlasCBS to the next level of design, implementation and effectiveness to make it a 
powerful global resource to expedite drug discovery. This overarching goal can be reframed in 
three specific improvements listed in order of importance and priority. 



30Software and Techniques for Bio-Molecular Modelling | www.austinpublishinggroup.com/ebooks
Copyright  Abad-Zapatero C. This book chapter is open access distributed under the Creative Commons At-
tribution 4.0 International License, which allows users to download, copy and build upon published articles even 
for commercial purposes, as long as the author and publisher are properly credited. 

1. Expedite the updating of the MySQL database that is a critical part of the server and that is now 
updated ‘off-line’ by a time consuming and inefficient procedure.

2. Improve the linking between the AtlasCBS and the Protein Databank (PDB) and possibly other 
database to facilitate client queries and access to the combined data. 

3. Expand the number of ligand properties extracted and computed from each compound in the 
SAR databases, namely BindingDB, ChEMBL and PDBBind to include pharmacokinetic data 
(Log P, Log D, among others) to relate efficiency indices to pharmacokinetic properties.  This 
is a critical step in order to use LEIs as optimization variables in the future and also to critically 
assess the value of LEM [14] [21].

Alternatively, given the developments in the computing and programming world, it is possible 
that a different approach might be more effective and practical in the long term. There is a 
critical issue that needs to be considered first.  Is it necessary to keep the AtlasCBS server as a 
central entity, with a proper identity, installed and maintained within a central public facility 
as it is currently at the EBI server? Or is it better to make it a more ‘democratic’ tool where the 
mapping of chemico-biological space is available within any rendition of SAR-databases? Are the 
two approaches necessary and do they complement each other? Or are they exclusive of each 
other? The second option will permit the community to explore fully these concepts and ideas 
by incorporating them into their workflows and decision-making. Time and the ingenuity of the 
future generations of drug discoverers will provide an answer to these questions.

FUTURE DEVELOPMENTS AND APPLICATIONS: MyCHEMBL
The initial AtlasCBS web tool[19] was conceived as a proof of concept and illustration of the 

possibility of having access to the content of three SAR-Databases (BindingDB, ChEMBL and 
PDBBind) with a series of tools to represent, map and analyze the content of those databases 
within a LE framework. The web tool also allowed the combination of publicly available SAR data 
with separate, user uploaded, and project related databases. Some examples have been illustrated 
in the previous sections.

Given the rate at which the public and private affinity-containing databases is constantly 
growing, updating the MySQL database associated independently with the AtlasCBS application 
presented serious problems given the limited resources of the team that initially developed the 
application. An expanded and updated combined database (ChEMBL, BindingDB, PDBBind and 
User Set), within the same web server environment, including additional efficiency indices and 
expanded capabilities for data uploading by the user is still being contemplated.  

Simultaneously, the various SAR-Databases are also developing their own strategies to handle 
issues such as the increase number of entries, frequency of updates, user support and the efficient 
use of the new computational and internet-based resources, including availability of powerful 
portable devices.
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Within this context, the ChEMBL team developed the independent, virtual machine and user 
controlled, application named MyChEMBL that proved to be an effective and practical way of 
making the entire content of the database available to the user and including an initial set of tools 
to interact and exploit its usage. 

MyCHEMBL is an open virtual machine implementation of open data that includes 
chemoinformatics tools. It has been described in two recent publications [22,23].  Basically, it 
consists of the following elements: i) a linux (Ubuntu) Virtual Machine (VM); ii) a PostgreSQL 
version of the corresponding version of the ChEMBL (currently ChEMBL19); iii) the latest version 
of the RDKit chemoinformatics toolkit and chemistry cartridge. In addition, it provides local 
and secure access to the latest ChEMBL web services, interactive IPython notebook tutorials, a 
PostgreSQL schema browser and KNIME example workflows.

Given these components, MyCHEMBL presents several advantages that are discussed by the 
authors: no cost and runs locally behind a firewall and therefore security concerns over uploaded 
data are nonexistent. In addition, the authors make available the source for all the applications 
and consequently further development is not only easy but also encouraged. In our limited 
experience, it has proven to be easy to use for novices and experienced researchers and there are 
plenty of learning resources available within the ChEMBL/EBI environment. 

This concept provided the opportunity of a very simple, inexpensive and effective way to 
develop an ‘atlas-like’ representation of the updated content of ChEMBL (CHEBML19) using 
workflows prepared with the public domain application KNIME [24]. This is what we introduce 
in this brief update on available software tools related to analyze and map the content of SAR-
databases as well as how to use them in your own drug-design applications. 

The workflows described and illustrated were developed using MyCHEMBL version 19 
(MyCHEMBL19) and KNIME 2.12.2. Several examples of the three basic workflows have been 
deposited in the KNIME 3.0 Example server and are accessible from /050_Applications/05022_
AtlasCBS. They are ranked from simpler to more complex. 

Workflow 1. Read a user/confidential data set in CSV format, calculate LE variables and map 
the resulting chemical matter in efficiency space. The user provides a text file (ex. 11HSD_text.csv) 
in CSV format containing the following information: compoundID, SMILES, affinity variable type 
( Ki, IC50, Kd in consistent units, typically nM), value, TargetID. In this example only BEI and SEI 
are calculated as well as PSA/MW that is useful to show the polarity gradient counterclockwise 
in the corresponding planes. The workflow reads the information, calculates desired efficiency 
indices based on simple ‘calculating algebraic modules’ adding additional colums to the data, 
and produces a 3D-scatter plot that allows flexibility as to which variables to choose, label and 
annotate. An example is provided in Figure 5 (top).
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Figure 5:  View of KNIME for workflows 1, 2. Workflow 1 (top) consists simply in reading 
a user prepared input file in CSV format with basic information. It can also be a downloaded 
file from ChEMBL or any other SAR-Database for any specific target. For this example only 

three new variables are calculated: BEI, SEI and 10(PSA/MW) for convenience in plotting the 
gradient of PSA/MW counterclockwise. Workflow 2 (lower part) is divided in two parts: 2a and  

2a (ctd). Part 2a. Data extraction section showing the configuration window for CHEMBLID 
target 279 corresponding to humanVEGRF. Over 7,000 compounds were extracted. Notice 

the row splitter in the top middle to separate two different types of assays: B (Binding) and 
F (Functional) part  2a (ctd). The LEIs calculations for all the indices listed in Table 1. LE is 

equivalent by an approximate conversion rational factor to BEI/LEI ~54 (Abad-Zapatero, 2013) 
[13].  Using the Ki values from ChEMBL LE can be easily calculated from equation 1 (Table 1) as 

well as other efficiency indices (e.g. LLE).
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Figure 6: KNIME workflow 3. The workflow combines data extraction from ChEMBL19 
as in workflow 2a (top) with data read from an external file (below) (6a). The configuration 

file for CHEMBL target ID 2051 (Neuraminidase) is shown (6b) as well as the input variables/
format for the external data (example: 11HSD_test.csv) in CSV format (6c). The image 

represents only the workflow up to the ‘row splitter’ selecting the IC50 values. Calculations of 
the LEIs are as in the previous workflows (consult the comments on the deposited workflow). 
The key node for this operation is the one named ‘Concatenate’ on the upper right. Target ID 

numbers can be easily consulted and identified using the search options of the ChEMBL website.

Workflow 2. Use the available MyCHEMBL data extractor to extract all the available data 
from a certain target(s), calculate desired efficiency variables and view and explore in the 
wider AtlasCBS context (Figure 5, lower portion). Configuration box for Target humanVEGFR2 
(CHEMBL279) is shown. 

Workflow 3.  Read an external data set, calculate LE variables and merge with existing data 
for an evaluation and comparison of different series. A simple example is presented merging data 
from two different targets. (Details are documented in the KNIME 3.0 workflow example server). 
The workflow is illustrated in Fig. 6. Resulting plots for Workflows 2 and 3 are presented in Figure 
7 and Figure 8. Data extracted for JAK1 kinase (ChEBML2835) in Fig. 7 and a combination from 
two targets human VEGFR2 (CHEMBL279 more than 7,000 entries) and a previously prepared 
external set (11HSD_text.csv, see workflow 1) is presented in Figure 8.
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Figure 7: Extracting and mapping data in AtlasCBS.  Plotting of data extracted from 
ChEMBL for JAK1 Tyrosine kinase (ChEMBL2835) annotated by the compound preferred name 
included in the dataset. Color gradient is based on the available value of ‘alogp’ (see upper right 

panel). Insert shows the same data but the labeling is now done by the chemical structure as 
stored in the SMILES column. These examples illustrate the versatility of the Scatter 2D-3D 

module of KNIME.
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Figure 8: Extraction of large data set from MyChEMBL19. Mapping the chemistry 
available for human VEGRF2 with over 7,000 entries.  The color gradient is based on the pKi 

affinity value (PCHEMB_value) read from the dataset. Notice the change from low to high values 
along the vertical axis. Large circles correspond to existing drugs as illustrated in the right lower 
panel (‘Size’) in Figure 7 and Figure 8.  The preferred compound name for ‘AXITINIB’ is shown.

Simple options within the 2D-3D scatter plot in KNIME make it possible to change the 
corresponding axes in the Cartesian ‘efficiency planes’ that are equivalent to the ones produced 
by the AtlasCBS application; 3D plotting is also possible and is left to the discretion of the user; it 
is not illustrated here. The different points in the plots (each corresponding to a target-ligand pair, 
like in the AtlasCBS) can be annotated and colored based on any of the available variables in the 
original ChEMBL data set or in the combined set. The workflows with appropriate documentation 
have been deposited in the KNIME example server http://www.knime.org/example-workflows 
(for KNIME 3.0 and above). 

These workflows are presented here only as an introduction and to impress upon the reader 
how simple it is to graphically organize and represent the content of SAR-databases using open 
access tools. The substantially large collection of modules currently available on KNIME [24] 
will permit the individual tailoring of drug-discovery approaches and strategies to expedite and 
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succeed in this multi-parameter optimization problem [24-27]. In particular, the author expresses 
his interest in critically assessing the value and use of LEIs and LEM as variables and parameters 
to drive and optimize drug design. Quite possibly, the broader dissemination and usage of these 
concepts and ideas will permit the testing of approaches, algorithms and workflows in a wider 
range of targets and biomedical problems [28]. Perhaps, workable and effective solutions might 
be around the corner for the future generations to discover and implement.
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ABSTRACT
One of the major goals of Bioinformatics is to understand the relationship between amino 

acid sequence and three –dimensional structure. The biological role of protein can be determined 
by its function, which in turn, is largely determined by its structure.The role of structure for 
biological sciences and research has grown considerably since the advent of systems biology. The 
task of functional characterization of a protein sequence is one of the most frequent problems in 
biology which is usually facilitated by accurate three-dimensional (3-D) structure of the studied 
protein. In the absence of an experimentally determined structure of protein, comparative 
or homology modeling can provide a useful 3-D model, related to at least one known protein 
structure. Comparative modeling predicts the 3-D structure of a given protein sequence (target), 
based primarily on its alignment to one or more proteins of known structure (templates).The goal 
of protein structure prediction is to estimate the spatial position of each atom of protein molecules 
from the amino acid sequence by computational methods. Before 1993, protein modeling was 
done through a semiautomatic and multi-step fashion, including distinct modeling procedure for 
SCRs (Structurally conserved regions), SVRs (Structurally variant regions), and side chains. In this 
chapter, MODELLER, the first automatic protein structure prediction tool, developed by Sali and 
Blundell [1], is elaborated along with the description of download and installation.

Modeller: An Application for Homology 
Modeling



39Software and Techniques for Bio-Molecular Modelling | www.austinpublishinggroup.com/ebooks
Copyright  Singh R. This book chapter is open access distributed under the Creative Commons Attribution 4.0 
International License, which allows users to download, copy and build upon published articles even for commercial 
purposes, as long as the author and publisher are properly credited. 

Keywords: Modeller; Comparative Modeling; Structure Prediction
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INTRODUCTION
The basic assumption for protein structure prediction is associated with similarities shared 

by sequences, but known sequences and structures have shown us the divergence from this 
basic assumption. Globin family is the best known example for this. Globin family includes 
haemoglobin, myoglobin and plant leg haemoglobin which adopt the same overall structure 
and carry out same function of oxygen transporting by same mechanism, but have a very low 
sequence identity (below 20%). This shows the importance of protein structure, as structure 
is much more conserved than the sequences ever are. With the increasing scope and utility of 
Bioinformatics, finding the solution to the problem of protein structure prediction started to 
become easier and pursuable. Solved structure of proteins with help of techniques like NMR and 
X-ray Crystallography made a base for Bioinformaticians to predict the structure of unknown 
proteins. PDB [2], which is the repository for solved structures of proteins, was used as a source 
and with the help of key procedures of Bioinformatics like sequence alignment, fold recognition, 
fragment based structural assembly and multiple structural refinement, the prediction technique 
of protein structure enjoyed a considerable and perceivable success. Protein structure prediction 
broadly can be categorized as: ab initio folding, comparative/ Homology modelling and threading.

Homology modeling (or comparative modeling) is considered as the most successful category 
of protein structure prediction so far. It is based on our understanding of protein evolution with 
which we can draw two inferences; (1) proteins that have similar sequences usually have similar 
structures and (2) protein structures are more conserved than their sequences. HM is based on 
the notion that new proteins evolve gradually from existing ones by amino acid substitutions, 
additions, and/or deletions and that the 3D structures and functions are often strongly conserved 
during this process. Many proteins thus share similar functions and structures and there are 
usually strong sequence similarities among the structurally similar proteins. Strong sequence 
similarity often indicates strong structure similarity, although the opposite is not necessarily true 
as we have discussed with the case of Globin protein family.

A QUICK REVIEW OF HOMOLOGY MODELING
In HM, the sequence of the protein of interest (target) is matched to an evolutionarily related 

protein with a known structure (template) in the PDB to construct protein structure. Thus, only 
those proteins having appropriate templates can be modeled by homology modeling. For the 
protein targets where templates with a sequence identity > 50% are available in the PDB, the 
homologous templates can be easily identified with the sequence-template alignments conducted 
precisely.
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Below are the brief standard processes involved in HM:

• Using the unknown sequence as a query to search for known protein structures.

• Producing the best possible global alignment of the template sequence(s) and unknown 
sequence.

• Building a model of the protein backbone and taking the backbone as a model.

• Using a loop- modeling procedure in gap region of target or template.

• Adding side-chains to the model backbone.

• Optimizing positions of side-chains.

• Optimizing the structure with energy minimization or knowledge-based optimization.

AUTOMATIC PROTEIN MODELING USING MODELLER
As stated earlier, protein modeling was not fully automatic until1993, and done through semi-

automatic fashion which included different procedures for SCRs, SVRs, and side chains. Modeller 
is the first automatic, full-atom protein modeling computer program.

What is Modeller? 

The first automatic protein modeling program- Modeller, developed by Sali and Blundell 
(http://salilab.org/modeller), is a very popular and widely used modeling package for homology 
or comparative modeling of protein three-dimensional structures. To compute the structure of 
the target protein, MODELLER optimally satisfies spatial restraints derived from the alignment 
of the target protein sequence and multiple related structures [3]. As input, it takes alignment 
of a sequence to be modeled and automatically generates 3-D model that contains all non-
hydrogen bonds. It also performs the additional tasks like de novo loop modeling, optimization 
of different models of protein structure, clustering, protein structure comparison, sequence 
database searching and protein sequence and/or structure alignment, etc. It does so, either by 
using distance geometry or optimization techniques, obtained from the alignment of the target 
sequence with the template structures. Modeller has no graphical interface of its own, but the 
command-line environment is comfortable to work with. 

Obtaining and Installing Modeller

Modeller is written in Fortran 90 and Python is its control language. Hence, Python scripts 
are input scripts to Modeller. Although knowledge of Python is not mandatory to run Modeller, 
it is useful in performing more advanced tasks. Precompiled executable for Modeller can be 
downloaded from aforementioned website.
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Required Operating System

Modeller can run on various operating Systems like Unix/ Linux, Apple Mac OS X  andMicrosoft 
Windows.

Required Software

An up-to-date web-browser is required, such as Internet Explorer, Firefox and Chrome etc.

Installation

Installation of Modeller depends on its operating system .The procedures for different 
operating systems differ slightly. Detailed instructions for installing Modeller on machines 
running on different operating systems can be found at http://salilab.org/modeller/ release.
html. Basically, the following steps are achieved for installing Modeller on Unix/Linux operating 
system.

• Go to http://salilab.org/modeller/download_installation.html.

• Download the distribution by clicking on the link indicating for Unix/ Linux.

• Obtain a key from URL http://salilab.org/modeller/registration.html. A valid license key, 
distributed free of cost to academic users, is required to use Modeller.

• Open a terminal or console and change to the directory according to the containing the 
downloaded zip file of Modeller latest version.

• Unpack the downloaded file with the gunzip / tar .command

• A new directory is created that contains files needed for installation. Move into that 
directory to install the Modeller with the help of command- ./Install 

• The installation script will prompt the user with several questions and suggest default 
answers. Follow and answer accordingly and begin the installation.

HOW A MODEL IS BUILT BY MODELLER
Modeller initiates itself with multiple sequence alignment between the target sequence and 

the template protein sequence(s). Basically this alignment is the input to the program. A set of 
spatial restraints is generated by Modeller using the template structures. These restraints are 
generally formed on the basis of statistical analysis of the relationships between many pairs of 
homologous structures. This statistics contributes quantitative description of how much various 
properties are likely to vary among homologous structures. Modeller effectively limits the 
number of conformations the model can assume by applying these spatial restraints. In fact, the 
correlation between two equivalents, for instance - Cα – Cα distances, or between equivalent main 
chain dihedral angles from two related proteins is expressed as a probability density function 
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(PDF) which can be used directly as spatial restraint. This PDF-based restraint allows you to build 
a structure that isn’t exactly like the template structure. Instead, in this manner the structure 
of the model would be allowed to deviate from the template but only in a way consistent with 
differences found between homologous proteins of known structure. For instance, if a particular 
dihedral angle in the template structure has a value of - x degree, the applied PDF-based restraint 
should allow the dihedral angle to assume a value of x plus or minus some value. This value is 
determined probabilistically by what is observed in known pairs of homologous structures, and 
also according to the form of the probability density function. Along with the Homology-based 
spatial restraints, a chemical restraint in form of force field (for example Charmm) is also applied. 
The use of force field enforces the control over proper stereochemistry [4], so that the model 
structure could not violate the rules of chemistry to satisfy the spatial restraints derived from the 
template structures. Next, these chemical and spatial restraints applied to the model are combined 
in a function which is called an objective function. Finally, the model is obtained by optimizing the 
objective function in Cartesian space. Also by varying the initial structure, several slightly different 
models can be calculated. The variability among these models can be used to estimate the errors 
in the corresponding regions of the fold. It could be said that the model building procedure of 
Modeller is similar to that of the structure determination by NMR spectroscopy.

HOW TO USE MODELLER
Information about downloading Modeller and installing it on Unix/Linux has already been 

mentioned. For more information, ‘Readme’ file available with the distribution can be looked upon. 
A simple demonstration and information on additional tools can be found at same aforementioned 
website of Modeller. The most basic use of Modeller in HM includes PDB atom files of known 
protein structures and their alignment with the target sequence to be modeled. The alignment 
may also contain very short segments such as loops, secondary structure motifs, etc.The output is 
a model for the target that includes all non-hydrogen atoms. Modeller is multifunctional and has 
built-in commands like SEQUENCE_SEARCH which searches for similar sequences in a database of 
fold class representative structures, MALIGN3D which aligns two or more structures, ALIGN that 
aligns two blocks of sequencesand CHECK_ ALIGNMENT which evaluates an alignment to be used 
for modeling. These built in commands help you prepare your input. There are other commands 
too like SUPERPOSE, ENERGYand COMPARE_SEQUENCES etc that need to be submitted to 
Modeller via a script that calls that command. Full details of writing scripts are described in the 
Modeller manual.

What the Inputs are

As input, Modeller takes three kinds of files; Protein Data Bank atom files with coordinates for 
the template structures, the alignment file with the alignment of the template and target sequence, 
and a script file that instructs Modeller what to do. 
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Each PDB atom file is named code.atm where code is a short protein code, preferably the PDB 
code. The file extensions could also be in pdb and ent format instead of atm. The code must be 
used as that protein’s identifier throughout the modeling. The preferred format for alignment file 
is like the PIR database format. A sample alignment in the PIR format is shown here.

>P1;sirtuin_2

sirtuin2:sm:wt:::::::0.00

MSFDFLGIKKALFGDNTPRPELKSLNIEGVAQLIQDGQVNKIITMVGAGVSTAAGIPDFR

SPSSGIYDNLEDFNLPTPNAIFTIDYFRRDPRPFFEIARRLYRPEAKPTLAHCFIRLLHD

KGLLLRHYTQNVDSLERLSGLPEEKLVEAHGTFHTGHCIKCNKQHDFEFMLNEILAKRVP

QCLKCRNVVKPDVVLFGESMPKKFFKNLSSDLNNCDLLIIMGTSLTVLPFCAMIHRVGND

VPRLYINREYNDGSTESGLSSFIMRFMVAGFKQNYMKWGRSDNKRDIFWSGNADDGVVKI

SELLGWKDDLLRLKKETDSRLNEEFLAKKSQDKTNGQ*

Modeller is a command-line only tool, and has no graphical user interface, so it demands a 
script file (usually Python) containing Modeller commands. In case of not being familiar with 
Python, examples/codes can be consulted in the examples directory/modeller directory. TOP 
language which is Modeller’s internal language is used by Modeller for scripting the alignment. 
Modeller can calculate multiple models for any input. Usually, it’s preferred to generate more than 
one model so that each model can be evaluated independently to choose the best final model on 
the basis of DOAP (Discrete Optimized Protein Energy) score method. Below is the example of 
script file-

Align2d.py

env = environ()

aln = alignment(env)

mdl = model(env, file=’1J8F’, model_segment=(‘FIRST:A’,’LAST:A’))

aln.append_model(mdl, align_codes=’1J8F’, atom_files=’1J8F.pdb’)

aln.append(file=’seq.fasta’, align_codes=’sirtuin_2’)

aln.align2d()

aln.write(file=’sir2_sm_1J8F.ali’, alignment_format=’PIR’)

aln.write(file=’sir2_sm_1J8F.pap’, alignment_format=’PAP’)

modeling

from modeller import *
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from modeller.automodel import *

env = environ()

a = automodel(env, alnfile=’sir2_sm_1J8F.ali’,

              knowns=’1J8F’, sequence=’sirtuin_2’,

              assess_methods=(assess.DOPE, assess.GA341))

a.starting_model = 1

a.ending_model = 10

a.make()

How to Run Modeller

Modeller is run by giving the command ‘mod scriptname’. If you name your script fyz.top, the 
command is mod fyz.

• To run Modeller you basically need to-

• Open a command line prompts (according to your Operating system; Linux/Unix or 
Windows or Mac OS X)

• Change to the directory containing the script and alignment files you created earlier, using 
the ‘cd’ command. 

• Run Modeller itself by typing the commands, full details of which can be found in 
documentation / manual of Modeller. 

An example of the SmHDAC1[5] and SmSirt2 [6] of Schistosoma mansoni are shown in the 
figure 1 below:
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Figure1: An example of the template-based modeling of SmSirt2 (left) and SmHDAC1 (right) 
by Modeller.

PREDICTING THE MODEL ACCURACY
Estimating the accuracy of a model is the most important factor in the absence of the known 

structure. A model, calculated using a template structure sharing more than 30% sequence identity 
is indicative of an overall accurate structure. However, when the sequence identity is lower, it 
is preferred to check the template used for modeling. When similarities are low, there is high 
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probability of the error with the alignment step also, making it difficult to distinguish between an 
incorrect template and an incorrect alignment with a correct template as well. There are several 
methods that can check whether or not the correct template was used for the modeling. These 
methods use 3-D profiles and statistical potentials [7][8][9] to access this information. Some 
examples of these programs include VERIFY3D [8], HARMONY [10], Prosa2003 [11][12], TSVMod 
[13], ANOLEA [14], DFIRE [15], DOPE [16] , QMEAN local [17], and SOAP [18].

It is notable that a model based on sequence identity >30% does not guarantee its accuracy.  
Here other factors, including the environment, can strongly affect the accuracy of a model. We can 
take the example of some calcium-binding protein that undergoes large conformational changes 
when bound to calcium. If a calcium-free template is used to model the calcium-bound state of the 
target, the model would be prone to be incorrect even with the good target-template similarity or 
accuracy of the template structure [19].

Additionally, there are programs such as PROCHECK [20] and WHATCHECK [21] that evaluate 
the stereo-chemistry of the model which includes bond-lengths, bond-angles, backbone torsion 
angles, and non-bonded contacts. PROCHECK can check the overall as well as residue by residue 
geometry. Tools of WHATCHECK produce easy to understand report. Homepages of both the 
program can be consulted for more information.

SUMMARY
Modeller calculates comparative models and achieves all necessary steps of homology 

modeling. Apart from model building, Modeller can also perform auxiliary tasks, including fold 
assignment , alignment of two protein sequences or their profiles, multiple alignment of protein 
sequences and/or structures [22], calculation of phylogenetic trees, and de novo modeling of loops 
in protein structures [23]. Specifically, users have access to ‘ModBase’ which is a comprehensive 
database of comparative models for all known protein sequences detectably related to at least one 
known protein structure, a web server ‘ModWeb’ for automated comparative protein structure 
modeling; and ‘ModLoop’ which is  a web server for automated modeling of loops in protein 
structures.

Over the past few years, improvements in the techniques and increment in number of known 
protein sequences and structures resulted in better output of Modeller. There has been a great 
increase in the accuracy of comparative models [24][25][26], along with the decrement in 
magnitude of errors in fold assignment, alignment, and the modeling of side-chains and loops. 
Nevertheless, there`s always a scope for future methodological improvements. Modeling of 
distortions and rigid-body shifts, as well as detection of errors in a given protein structure model 
still demand more accuracy.
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INTRODUCTION
Modern large-scale DNA sequencers currently produce massive amounts of biological 

sequence data. However, genome sequencing itself does not allow for full understanding of the 
biochemical and molecular mechanisms involved in a cell. In this context, knowledge about the 
three-dimensional structure of proteins is highly valuable, allowing for biological processes 
to be investigated more directly and at higher resolution and with finer detail [1]. Despite 
community-wide efforts in structural biology, the high degree of difficulty in determining the 
three-dimensional structure of proteins has generated a large discrepancy between the volume 
of data generated by genome projects and the number of three-dimensional structures of proteins 
that are currently known [2].

Currently, three main experimental methods are used to solve three-dimensional structures 
of proteins: X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy and electron 
microscopy (EM). In X-ray crystallography, crystalline atoms are exposed to a beam of incident 

Protein Structure Prediction Using Molecular 
Homology Modeling
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X-rays that diffract in many specific directions. By measuring the angles and intensities of these 
diffracted beams, a three-dimensional picture of the density of electrons is obtained and the mean 
positions of the atoms in the crystal as well as their chemical bonds can be determined [3,4]. NMR 
spectroscopy utilizes the quantum mechanical properties of the atomic nucleus to determine 
how the atoms are linked chemically and how close they are located to each other [5-7]. NMR 
spectroscopy is a method that can identify three-dimensional structures of proteins molecules 
in the solution phase, allowing for investigation of time-dependent chemical phenomena such 
as reaction kinetics and intramolecular dynamics [6,7]. Despite substantial progress in the 
methodologies for structural determination of proteins, limitations remain for these two 
experimental techniques. For example, protein crystals are essential for the use of crystallography 
and many proteins either do not crystallize or generate crystals that are inadequate for analysis. 
In addition, NMR spectroscopy has restrictions regarding the size of the protein to be studied 
and has been limited to relatively small proteins or protein domains. For both methodologies, 
structure determination can fail due to problems of aggregation and reduced solubility. In 
electron microscopy, the sample is exposed to a beam of electrons, and the emerging electrons are 
detected and used to map out the structure of the materials they smashed into [8,9]. Until only a 
few years ago, electron microscopy was usually not the first choice for many structural biologists 
due to its limited resolution. Recent works, however, have been changed this scenario producing 
high resolution models using electron cryo-microscopy (cryo-EM) [9-12]. For any choice among 
the three techniques discussed, in general, experimental determination of three-dimensional 
protein structures is expensive and time consuming.

In the absence of experimental methods, computational approaches for predicting three-
dimensional structures have been used to obtain information about the structure of proteins 
[2,13–17]. Structural bioinformatics is an area of computational biology focused on the structure 
of macromolecules, including DNA, RNA, and proteins [1]. Elucidation of three-dimensional 
structures of proteins is undoubtedly one of the main areas of research in structural bioinformatics 
[1]. Currently, computational approaches for predicting three-dimensional protein structures can 
be divided into four main classes [2,17]: 1) first principle methods without database information 
[15]; 2) first principle methods with database information [18,19]; 3) fold recognition and 
threading methods [20-23]; and 4) homology (or comparative) modeling methods [24,25]. A 
biennial community-wide Critical Assessment of protein Structure Prediction (CASP) experiment 
evaluates the progress and challenges in state-of-the-art of protein structure modeling techniques 
[26-29]. The CASP is a competition where researchers are given a set of protein sequences 
that have known but unreleased three-dimensional structures to use as the input for modeling 
programs. Three-dimensional solutions are submitted, evaluated, and compared with the known 
protein structures, which are released after the contest concludes.

This chapter briefly reviews protein structure prediction using molecular homology modeling, 
with a focus on conceptual methodology.
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BACKGROUND
In homology (or comparative) modeling, previously solved structures of related proteins 

are used as templates [24,25]. This approach is based on the premise that evolutionarily related 
proteins tend to be similar in their three-dimensional structures (Figure 1). The prediction 
process consists of fold assignment and template selection, alignment of the target and template 
sequences, model building, and model evaluation and refinement [16,24,25,30]. If necessary, 
alignment and model building are repeated until a satisfactory result is obtained. A general 
flowchart illustrating generic steps in the construction of a model is shown in Figure 2. Several 
useful programs and servers for performing these steps are listed in Table 1. Protein structure 
homology modeling has become a routine method for providing structural models in cases where 
no experimental structures are available and there is at least one closely related protein with an 
experimentally determined three-dimensional structure.

Homology modeling is the most frequently used methodology in protein structure prediction 
because it is a very precise and accurate prediction method when a reasonable evolutionary 
relationship is present [16,25,31]. Furthermore, the reliability and quality of the predicted 
structures can be estimated. At same time, homology modeling is limited due to the inability to 
perform prediction of new folds since this methodology can only predict structures of protein 
sequences that are closely related to other protein sequences of known structures [2].

Figure 1: Premise of molecular homology modeling. Evolutionarily related proteins 
have some differences with respect to their amino acid sequences but retain high degrees of 

structural similarity.
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Figure 2: A flowchart illustrating generic steps in the construction of a protein structural 
model using molecular homology modeling.
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Table 1: Useful programs/servers in homology modeling.

Programs / Servers Main characteristic Availability

Protein Data Bank - PDB Archive about the 3D shapes of 
proteins http://www.rcsb.org/pdb/home/home.do

Protein Data Bank in Europe - 
PDBe

Archive about the 3D shapes of 
proteins http://www.ebi.ac.uk/pdbe/services

FASTA Database-scanning software http://www.ebi.ac.uk/Tools/sss/fasta/

BLAST Database-scanning software
http://www.rcsb.org/pdb/home/home.do#Subcategory-

search_sequences
http://blast.ncbi.nlm.nih.gov/Blast.cgi

EMBOSS Needle Pairwise sequence alignment http://www.ebi.ac.uk/Tools/psa/emboss_needle/

ClustalW2 Multiple sequence alignment http://www.ebi.ac.uk/Tools/msa/clustalw2/

MUSCLE Multiple sequence alignment http://www.ebi.ac.uk/Tools/msa/muscle/  

T-Coffee Multiple sequence alignment http://www.ebi.ac.uk/Tools/msa/tcoffee/

3D-JIGSAW Web server using rigid-body 
assembly http://bmm.cancerresearchuk.org/~3djigsaw/

SWISS-MODEL Web server using rigid-body 
assembly with loop modeling http://swissmodel.expasy.org/

SEGMOD Homology modeling by segment 
matching http://csb.stanford.edu/levitt/segmod/

JACKAL (NEST) Homology modeling by artificial 
evolution

http://wiki.c2b2.columbia.edu/honiglab_public/index.php/
Software:Jackal

MODELLER Homology modeling by satisfaction 
of spatial restraints https://salilab.org/modeller/

ModLoop Loop modeling http://modbase.compbio.ucsf.edu/modloop/

RAPPER   Loop modeling http://mordred.bioc.cam.ac.uk/~rapper/

FALC-Loop Loop modeling http://falc-loop.seoklab.org/

SuperLooper Loop modeling http://bioinf-applied.charite.de/superlooper/

SCWRL Side-chain modeling http://dunbrack.fccc.edu/scwrl4/

SCCOMP   Side-chain modeling http://www.sheba-cancer.org.il/cgi-bin/sccomp/sccomp1.cgi

SCAP Side-chain modeling http://wiki.c2b2.columbia.edu/honiglab_public/index.php/
Software:Scap

RAMP Main-chain and side-chain modeling http://www.ram.org/computing/ramp/ramp.html

PROCHECK Model assessment http://www.ebi.ac.uk/thornton-srv/software/PROCHECK/
index.html

WHATCHECK Model assessment http://swift.cmbi.ru.nl/gv/whatcheck/

ProSA-web Model assessment https://prosa.services.came.sbg.ac.at/prosa.php

VERIFY3D Model assessment http://services.mbi.ucla.edu/Verify_3D/

ERRAT Model assessment http://services.mbi.ucla.edu/ERRAT/

ANOLEA Model assessment http://melolab.org/anolea/

TECHNIQUE DESCRIPTION
The first step in homology modeling of a protein of unknown three-dimensional structure 

(target protein) is identification of proteins that can function as templates. A good candidate 
template should be a protein closely related to the target protein with a known three-dimensional 
structure [25,32]. This step is performed using database-scanning software with the target 
sequence as a query. Since it is necessary to find a related protein with a known three-dimensional 
structure, the search can be performed by querying the structural database Protein Data Bank 
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(PDB) [33] using an available tool from this database, such as the Basic Local Alignment Search 
Tool (BLAST) [34]. The selection of homologues with known structures from the PDB is a 
straightforward task if the query sequence has high sequence identity (>30%) to a structure. One 
major challenge in the template search step is the detection of remote homologues. In response, 
sequence profile methods, such as position-specific profile search methods [35] and hidden 
Markov models (HMMs) [36,37], have emerged as the primary approaches in distant homology 
detection and have improved the accuracy of sequence alignments, extending the boundaries of 
detectable sequence similarity [30].

After identifying at least one template protein, it is necessary obtain a sequence alignment 
between the target protein and template proteins. The main objective of the alignment is to 
identify a good correlation between the amino acid residues of each sequence. Correct alignment 
is the most important step, since errors introduced into the model by misalignment are difficult 
to remove in the later stages of refinement [30]. When only one template is used, a pairwise 
alignment method such as Dynamic Programming [38] is applied. Multiple alignment methods 
can be used when more than two sequences must be aligned [39–47].

Information about the templates and a target-templates sequence alignment is then used 
to generate a three-dimensional structural model of the target. Four main methods of model 
generation are employed for this purpose [30,52]: 1) modeling by assembly of rigid bodies 
[48,49]; 2) modeling by segment matching [50,51]; 3) modeling by artificial evolution [30,52]; and 
4) modeling by satisfaction of spatial restraints [53-55]. The assembly of rigid bodies approach 
begins with the identification of conserved and variable regions of the templates by superposition 
[48, 49]. A framework for the superimposed templates can be calculated by averaging the atom 
coordinates of the structurally conserved regions. Using the closest conserved segment (in terms 
of root-mean-square deviation to the framework), conformations of the residues of the conserved 
regions are directly transferred to the model, and unconserved regions are then constructed using 
an ab initio approach or by searching a database for compatible structures [48,49]. In the segment 
matching approach, a model for the target sequence is built from a database of known structures. 
The target structure is broken into short fragments that are used to select segments with matching 
shape in the database [50,51]. Thus, sequence alignment is done over segments rather than over 
the entire protein. The segment coordinates are fitted into the building target structure until all 
the atomic coordinates of the target structure are obtained. Several independent models are built 
and then an average model is obtained [50,51]. Modeling by artificial evolution involves splitting 
the alignment between the query and template sequence into a list of operations, such as residue 
mutation, insertion, or deletion, representing a scenario in which the template (“parent structure”) 
evolves into the target [30,52]. The model could be considered a process of evolving the template 
structure, based on the alignment, so that changes are carried out in a stepwise manner, with each 
step involving an energy cost [30]. Finally, modeling by satisfaction of spatial restraints uses a 
procedure that is similar in concept to that used in the determination of protein structures from 
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NMR-derived restraints. The model is generated after applying many restraints obtained from 
the alignment of the target with the template structures [53–55]. These restraints are relative to 
distances and dihedral angles and stereochemical restraints such as bond length and bond angle 
preferences. The model is built by an optimization method to satisfy spatial restraints [53]. 

Once a protein structure model is built, it is refined by focusing on tuning alignment and 
modeling loops and side chains [30,52]. Target sequences often have regions that are structurally 
different from the related regions in the templates. These segments correspond to loop regions 
that are characterized by insertions and deletions, which producing gaps in the sequence 
alignment. The gaps cannot be directly modeled requiring additional loop modeling procedure, 
which is a very difficult problem in homology modeling and is also a major source of error [56]. 
There are two main categories of methods for loop modeling [57]: 1) knowledge-based methods, 
which try to identify a segment of a protein with a known three-dimensional structure that fits 
the stem regions of the loop; and 2) ab initio (de novo) methods, which are usually based on 
potentials or scoring functions. Loop modeling is critical because these regions may contribute 
to specific interactions, such as active and binding sites. After the main chain atoms are built, 
the positions of side chains that are not modeled must be determined. Due to the side chain 
geometry is very important in evaluating protein-ligand interactions at active sites and protein–
protein interactions at the contact interface, much effort has been dedicated to the development 
of many side chain packing programs. As a strategy, a side chain can be built by searching every 
possible conformation at every torsion angle of the side chain to select the one that has the 
lowest interaction energy with neighboring atoms. However, this approach is computationally 
prohibitive in most cases and the programs frequently utilize a combinatorial search based on 
discrete side chain conformations called rotamers. In this regard, all successful approaches to 
side-chain placement are at least partly knowledge based [57]. Although loop modeling and side 
chain modeling steps apply potential energy calculations to improve the model, this does not 
guarantee that the entire raw homology model is free of structural irregularities. To relieve steric 
collisions and strains without significantly altering the overall structure, an energy minimization 
and molecular dynamic simulation procedures can be applied on the entire model. 

Evaluation of model quality is an important final step in homology modeling. When a model 
is built, it is necessary to check it for possible errors. Every homology model contains errors 
that mainly depend on the percentage of sequence identity between template and target and the 
number of errors in the template. These errors are frequently estimated either from the energy 
of the model or from the resemblance of a given characteristic of the model to real structures 
[30,58]. Assessment of homology models includes physicochemical parameters evaluations (such 
as φ–ψ angles, chirality, bond lengths and bond angles), assigning a score for each residue in 
its current environment [30,58]. The resolution of the models is another useful evaluation that 
determines the applications of prediction models. For example, studies involving drug design 
require high resolution models with a root-mean-square deviation (RMSD) of 1 to 1.5Å [59,60]. It 
is important to note that a relative low resolution model is still useful for certain purposes [60].
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FINAL CONSIDERATIONS AND CONCLUSIONS
The complete understanding of the biological roles of proteins requires knowledge of their 

structures. However, there are many important proteins for which the sequence information is 
available, but their three-dimensional structures remain unknown. Experimental methods to 
determine protein structures are time consuming and limited in their approach. Protein structural 
prediction offers a theoretical alternative to experimental determination of structures, allowing 
an efficient way to obtain structural information when experimental techniques are not successful. 
The process of the molecular homology modeling of proteins is simple in principle, deriving 
models from close homologs with experimentally determined three-dimensional structure. It 
is performed by sequential steps involving template selection, sequence alignment, backbone 
generation, loop building, side chain modeling, model refinement, and model evaluation. Among 
these steps, sequence alignment is the most crucial step and loop modeling is the most difficult. 
Although this technique is inability to perform prediction of new folds, because its knowledge-
based nature, molecular homology modeling is one of the most frequently used methodology, 
allowing generation of precise and accurate models.
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ABSTRACT
Computer-assisted decision-making contributes to selection and optimization of lead 

molecules as well as the discovery of small molecule drug development tools for chemical 
biology. Integration of chemoinformatics, bioinformatics and high throughput virtual screening 
is increasingly used to address challenging and unexplored drug targets amenable to small 
molecule perturbations. In this chapter, we will highlight the ability of high throughput virtual 
screening for the development of potential small molecule therapeutics targeting unexploited but 
important drug targets. Our particular focus will be on automated docking, three-dimensional 
shape-based screening, electrostatic complementarity as well as the application of these methods 
in finding lead molecules. This novel synergistic virtual screening technique has emerged as 
promising, cost-effective, time saving and even helpful in cases where structural information 
of the target is not available. Finally, we will provide examples of how high throughput virtual 
screening encompassing docking, three-dimensional shape-based matching and electrostatic 
complementarity have helped in the advancement of small molecule therapeutics against 
unexploited targets such as Mtb GlgB, RNA and NAADP-mediated signalling pathway.

Structure, Shape and Electrostatic Based  
Virtual Screening to Discover Small Molecule 

Therapeutics
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INTRODUCTION
The main aim of a drug discovery researcher is to identify a new chemical scaffold (hit molecules) 

which shows reasonably sufficient biological activity for a particular drug target and optimizing 
this scaffold through iterative cycles of structure-activity relationship (SAR), thus, yielding a lead 
molecule with improved potency and favourable absorption-distribution-metabolism-excretion-
toxicity (ADMET) properties [1,2]. After successful completion of various phases of clinical trials, 
this compound can be launched as an FDA approved drug. The novel chemical scaffolds can be 
identified by random screening, phenotypic and target-based high throughput screening (HTS) 
and target-based direct design approach (if the high atomic resolution structure is available) [3]. 
Computational approaches such as high-throughput virtual screening (HTVS) are increasingly 
developed and refined to identify novel lead molecules in the pharmaceutical industry and 
academic groups [4]. HTVS is an application based upon various computational methods to 
“screen” large compound libraries, prioritizing ligands for experimental HTS or chemical 
synthesis [4]. HTVS typically ranks library molecules (using matrices such as docking score, shape 
and electrostatic Tanimoto) in the order of decreasing biological activity [5,6]. 

Can HTVS be complementary to HTS? Traditionally, random screening and now HTS is 
employed to identify novel small molecule ligands for biological targets [3,7]. With advances 
in robotics, automation, database management, software development, statistics, assay 
miniaturization, HTS is a method of choice, especially in pharmaceutical settings, to screen 
compound libraries comprising of millions of compounds for drug discovery [3]. Combinatorial 
methods for library design ‘churning out’ millions of compounds and advances in sophisticated 
biological assay development have increased the popularity of HTS. However, HTS methods have 
persistently failed to generate satisfactory results. The low hit rate, higher screening costs and 
intrinsic errors of HTS data, place severe constrains on the significance of HTS screening platform 
for developing small molecule ligands for biological targets [7-10]. Moreover, HTS approaches 
are less flourishing for unexploited targets as the compound libraries are biased towards protein 
targets with well-defined binding sites. There is a wide gap in translating the HTS identified 
hits into a preclinical candidate that can be optimized to become a drug molecule. Advances in 
structural biology, computing resources and development of high-end graphical cards for GPU 
computation has resulted in HTVS being integrated into the drug discovery and the design of 
small molecule chemical tools for understanding various biological processes (Figure 1). As HTVS 
involves pre-filtering of the compound libraries (Figure 2), it is attractive with the promise of 
higher hit rates, more drug like or lead like molecules [4,11].
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Figure 1: General workflow for HTVS integrated drug discovery process.
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Figure 2: The schematics depicting the procedure for preparing a multi-conformer database.

Broadly HTVS approaches fall into two main classes1:1) structure –based, protein-centric 
and 2) shape-based, ligand-centric [12]. When the ligand-bound high atomic resolution crystal 
structure of the target protein is available, virtual screening using docking is often considered 
as the first choice strategy [13] (Figure 3). Many stand-alone docking programs, each with their 
strength, weaknesses and scoring functions are available (Table 1). Additionally, several new 
docking software initiatives that utilize the power of “distributive computing” are available for 
various drug discovery processes (Table 2). Docking is a useful method of virtual screening with 
its strength and limitations [13]. The reliability of the scoring functions used to rank the docked 
molecules is well-documented [12]. Furthermore, the uncertainty to correctly predict the binding 
mode of the diverse compounds has further limited the use of docking as a validated screening 
technique.
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Table 1: A list of stand-alone docking programs with their web addresses.

Docking 
Program Web Address Algorithm Description

AutoDock http://autodock.scripps.edu/

Genetic algorithm, 
Lamarckian genetic 
algorithm, simulated 

annealing

Keeps ligand and protein side chains flexible, provides 
high quality predictions of ligand conformations, and 

good correlations between predicted inhibition constants 
and experimental ones.

DOCK http://dock.compbio.ucsf.edu/ Shape fitting (sphere 
sets)

Rigid body docking. It uses geometric matching 
algorithm to superimpose ligand onto the negative 

image of the binding pocket.

GOLD http://www.ccdc.cam.ac.uk/Solutions/
GoldSuite/Pages/GOLD.aspx Genetic algorithm

Ligand is flexible and protein is partial flexible. Provides 
virtual screening, lead optimization, and identify the 

correct binding mode of active molecules.

FlexX http://www.biosolveit.de/flexx/ Incremental 
construction

Ligand is flexible and protein flexibility is achieved 
through ensemble of protein structure. Accurately 

predicts the protein-ligand complex geometry.

FRED http://www.eyesopen.com/oedocking Shape fitting 
(guassian)

Performs a systematic, exhaustive, non-stochastic 
examination of all possible poses within the protein 

active site and also filters for shape complementarity 
and pharmacophoric features.

Glide http://www.schrodinger.com/Glide Monte Carlo 
sampling

Both ligand and protein are flexible. Exhaustive search 
based docking program.

LigandFit http://accelrys.com/ Monte Carlo 
sampling

Ligand conformations are docked into an active site 
based on shape and minimized using CHARMM.

ICM http://www.molsoft.com/docking.html Monte carlo 
minimization

Both ligand and protein are flexible. Based on pseudo-
Brownian sampling and local minimization.

Surflex http://www.certara.com/products/
molmod/sybyl-x/sbd/

Surface based 
molecular similarity

Offers HTVS and accurate prediction for ligand binding 
mode and conformation.

FITTED http://fitted.ca/ Genetic algorithm
It accounts for flexibility of the two molecules and 

location of water molecules to form potential covalent 
bonds with the protein side-chains

HYBRID http://www.eyesopen.com/oedocking Shape fitting 
(guassian)

It uses bound ligand information to improve virtual 
screening performance

Table 2: A few popular distributive computing softwares for docking.

Database Web address Description

Docking@home http://boinc.berkeley.edu/wiki/Docking@Home Simulate the docking of ligands to proteins

Surflex-Dock http://www.certara.com/products/molmod/surflex/
surflex-dock

Predicts binding pose, screen and prioritize 
molecules for lead discovery

Rosetta@home http://boinc.bakerlab.org/ Predict and design protein structures, and protein-
protein and protein-ligand interactions

Surflex-sim http://www.certara.com/products/molmod/surflex/
surflex-sim

Helps in finding chemical scaffolds while potentially 
reducing risks associated with toxicity.

Topomer search http://www.certara.com/products/molmod/sybyl-x/
simpharm/

Screen whole molecules, side chains, or scaffolds 
using conformationally independent topomer 

similarity

https://en.wikipedia.org/wiki/Ligand_binding
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Figure 3: HTVS workflow illustrating two distinct approaches - target-centric (molecular 
docking, target crystal structure available) and ligand centric (3D shape-based screening, 

unknown target structure).

Recently, the focus has shifted to virtual screening methodology involving three-dimensional 
(3D) shape and electrostatic-based screening [14,15]. The shape-based screening is based on the 
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concept of similarity principle “similar shape molecules show a similar biological response.  There 
are many shape-based algorithms available including Cat-Shape as implemented in CATALYST, 
the Phase-Shape module as implemented in the Schrodinger product suite, Ultrafast shape 
recognition (USR) as implemented in ElectroShape, Rapid Overlay of Chemical Structures (ROCS) 
as implemented in the Openeye software and XED field points as implemented in Blaze from 
Cresset technology [5,16-18]. Shape-based virtual screening methods are becoming increasingly 
popular, and the literature data show that a shape-based screening methodology is more reliable 
and performs better than docking [15].  Electrostatic interactions are long-range forces that 
favour the formation of non-covalent bonds for partners with oppositely charged groups [14]. 
Many drug like molecules contain charged groups, such as carboxylates or aliphatic amines, which 
interact with complementary partners in the binding site. Thus, electrostatic complementarity 
plays an important role in exploring the relationship between the polarity of the molecule and its 
relative promiscuity [14].

Herein we will discuss various strategies for the chemical database use, compound preparation 
for docking and 3D shape-based screening by illustrating three distinct cases of Mycobacterium 
tuberculosis (Mtb), RNA and NAADP-mediated signalling pathway [19-22]. We envisaged that the 
example provided in the case studies discussed here would encourage researchers from diverse 
backgrounds to apply HTVS for in drug discovery or for the development of small molecule 
chemical toolkit for studying various biological processes.

Successful Applications of HTVS

Case: Where the X-ray crystal structure of the target molecule is known

The α-1,4-glucan branching enzyme (GlgB) is critical for the biosynthesis of α- glucan and an 
essential component of Mtb cell wall [23]. Inhibition of GlgB with potent chemical scaffolds would 
prevent the branching of α-glucan, resulting in linear forms, thus causing cell wall lysis. The crystal 
structures of human (4BZY) and Mtb (3K1D) exhibit clear differences in structural aspects [24]. 
As a result, the inhibitory targeting of Mtb GlgB would be highly beneficial. The study successfully 
unearthed potent GlgB inhibitors using ligand and structure based drug design methodologies 
[19]. To identify hits that are selective for Mtb GlgB, HTVS was performed on both human and 
Mtb GlgB. Automated docking was used in combination with 3Dshape-based screening to pull out 
diverse hits targeting Mtb GlgB [19]. From the generated hits of Mtb GlgB, 17 compounds that are 
specific for Mtb GlgB are selected for further evaluation. These compounds were further analysed 
for favourable in silico pharmacokinetic and enzyme inhibition assay. The 3D conformers of the 
selected ligands were used as queries to find 29 additional hits from the in-house database. The 
binding conformation and interaction of these two compounds (after biological assays) in human 
and Mtb GlgB were compared by using AutoDock [25] (Figure 4).
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Figure 4:  a) Mtb GlgB crystal structure. b) and c) are chemical structures of inhibitors 
identified using HTVS approach.

Outcome: Two potent inhibitors of Mtb GlgB were discovered and experimentally validated using 
enzymatic and in vitro biological assay [19].

The detailed steps followed in the HTVS methodology are summarized below:

1. The Mtb GlgB crystal structure  was downloaded from PDB (www.pdb.org) (PDBID: 3KID) 
[24].

2. The homology model of human GlgB was generated using SWISS-MODEL interface, a web 
integrated service (http://swissmodel.expasy.org/) [26]. The target sequence was used as 
input for automated modelling of the protein.

3. Downloaded diverse ligand databases: Maybridge from www.maybridge.com and ZINC 
from http://zinc.docking.org/.2 Stepwise procedure to perform docking using Glide:

a. To run any Schrodinger program on Linux- The Schrodinger environment variable is set to 
the installation directory by the command: 
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csh/tcsh: setenv SCHRODINGER installation-directory. The Maestro interface can be started by 
using the command:

SCHRODINGER/maestro&.

 For windows: start → All programs → Schrodinger → Maestro.

b. In the graphical interface Maestro, protein preparation wizard was used to add missing 
hydrogen’s and water, assign bond orders and minimize models using OPLS-AA in 
Schrodinger package. The energy minimization comprises of rigid-body translations and 
rotations to optimize the model.

c. “Receptor grid generation” application was used to prepare a grid around the active sites 
of the GlgB protein.

d. The database molecules were prepared using “LigPrep” to add missing hydrogen’s, remove 
counter ions, neutralize charged groups, generate ionization states, tautomers and optimize 
ligand geometries.

e. In ligand-based VS, the prepared ligands were docked into the generated receptor grid.

f. In the end, the results are shown in the project table as pose viewer file. The top hits were 
selected by considering selective binding towards Mtb GlgB.

4. The selected ligands were assessed for their ADMET properties using QikProp. To run 
QikProp:

a. Choose Applications QikProp

b. Choose Project Table from the Use structures from option menu.

c. From the incorporate option menu, choose Replace existing entries.

d. Click save and run.

5. These hits generated from HTVS were used to find additional hits from our in-house 
database using 3Dshape-based screening. The structures of query molecules were drawn 
in ChemDraw and energy minimization was performed using MMFF94.

6. Generation of 100 three-dimensional conformers of each query ligand molecule and each 
molecule in the in-house database using Omega [27]. Command line option:

Omega2 –in query molecule name.sdf –out conformers.oeb.gz –maxconfs 100

(Option maxconfs is used to set the maximum number of conformers to be generated)

7. 3Dshape comparison was performed using ROCS [27] based on the shape Tanimoto 
coefficient [6] and color scores (chemistry alignment overlap) [28]. The commands used 
for screening using ROCS are:
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a. Firstly the output is changed to a compact form:

rocs –dbase <database name.oeb.gz> -query <query name.sdf> -prefix out_oeb –besthits 500 –
oformat oeb

b. Command for 3Dshape matching:

rocs –dbase <database name.oeb.gz> -query <query name.sdf> -prefix tversky –besthits 500 –oformat 
oeb.gz rankby tanimoto

(Tversky measure ranks molecules, biased towards the query molecule; Tanimoto quantifies the 
3Dshape-based match score) 

c. Command for 3D chemistry alignment:

rocs –dbase <database name.oeb.gz> -query <query name.sdf> -prefix colour -besthits 500 –chemff 
ImpilcitMillsDean

d. The ranking is done on the basis of the total score as the sum of shape Tanimoto coefficient 
[6] and color score [28]. The Tanimoto coefficient ranges from 0 (no similarity) to 1 
(complete shape similarity) [6]. The color score “1” and “0” represents no overlap and 
complete chemistry overlap, respectively [28].

8. Molecules with the highest score were output in rank order as potential hits.

9. To determine the binding conformation and interaction of these molecules, AutoDock [25] 
was used to dock the compounds into Mtb GlgB and subsequently check their binding to 
human GlgB. 

10. Biological assay validation.

Case: To use known ligands as templates in virtual screening for finding novel 
chemical scaffolds

RNA is a versatile supramolecule that plays an important role in various cellular processes. RNA 
has been shown important in the progression of many infectious, metabolic and genetic disorders 
directly or indirectly [29-32]. There has been a tremendous advance in the structural biology of 
RNA and thus, targeting RNA by small molecules is an attractive area of research. In this case study, 
we have provided examples of RNA molecules that are directly involved as causative agents for 
disease progression. For example, RNA with expanded repeats of CUG, CAG, etc. are responsible 
for many debilitating diseases (such as myotonic dystrophy, Huntington’s and Spinocerebellar 
ataxia type 3) [33-38]. The structure of the RNA molecule with fewer repeats of CAG, CUG, etc. 
has been solved, but the pathological RNA molecule with hundreds of repeats remains unknown 
[39,40]. Additionally RNA is a “floppy” molecule, which makes docking problematic, despite of 
thefew advances made [41-43]. In this context, we will highlight an alternative approach, where 
the known ligands Hoechst 33258, pentamidine and DAPI have been exploited to mine various 
high quality databases by 3Dshape-based and electrostatic screening [20,21] (Figure 5).
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Figure 5: Schematics depicting ligand centric, shape-based screening strategy applied for 
RNA repeats of CUG and CAG.

Outcome: The study reported a series of inhibitors that are approximately twenty folds more 
potent than the query molecules pentamidine, Hoechst 33258 and DAPI [20,21].

To perform 3Dshape-based screening, the essential steps as reported in the case studies 
[20,21] are listed below:

Download diverse ligand databases such as NCI from cactus.nci.nih.gov and eMolecules from 
www.emolecules.com. [3]

Generation of 100 3D conformers of each query ligand molecule as well as each molecule in 
the NCI and the eMolecules database using Omega [4,27]. 

Omega2 –in query molecule name.sdf –out conformers.oeb.gz –maxconfs 100

(Option maxconfs is used to set the maximum number of conformers to be generated)

1. The structures of DAPI, pentamidine and Hoechst 33258 were drawn in ChemDraw and 
energy minimized with MMFF94 force field and the query molecules were entered as 
neutral molecules in the screen.

http://www.emolecules.com
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2. 3Dshape comparison was performed using ROCS [27] based on the shape Tanimoto 
coefficient [6] and color scores (chemistry alignment overlap) [28]. Command line to 
perform shape-based matching and chemistry alignment.

a. Firstly the output is changed to a compact form:

rocs –dbase <database name.oeb.gz> -query <query name.sdf> -prefix out_oeb –besthits 500 –
oformat oeb

b. Command for 3Dshape matching:

rocs –dbase <database name.oeb.gz> -query <query name.sdf> -prefix tversky –besthits 500 –oformat 
oeb.gz rankby tanimoto

(Tversky measure ranks molecules, biased towards the query molecule; Tanimoto quantifies the 
3Dshape-based match score) 

c. Command for 3D chemistry alignment:

rocs –dbase <database name.oeb.gz> -query <query name.sdf> -prefix colour -besthits 500 –chemff 
ImpilcitMillsDean

d. The ranking is based on the total score (sum of shape Tanimoto coefficient and color score) 
[28]. The Tanimoto coefficient or color score of “1”, “0.5” and “0” represents complete 
overlap, 50% overlap and no overlap respectively.

3. The top 500 molecules with the highest score were output in rank order as potential hits 
[6,27,44].

4. A visually inspected chemically diverse subset of molecules was selected from the ROCS [5] 
selected molecules.

Case: Shape and electrostatic based screening to identify analogs of a biologically 
relevant molecule NAADP

The discovery of two novel calcium signalling second messenger, cyclic ADP-ribose (cADPR) 
and nicotinic acid adenine nucleotide phosphate (NAADP) has created an unprecedented and 
unexpected understanding of Ca2+ signalling in living organisms [45-48] . Medicinal chemists 
have solved many technological challenges to allow the synthesis of various analogs of cADPR and 
NAADP. These analogs have provided invaluable pharmacological insights into the cell signalling 
events in living cells. We will highlight how HTVS particularly 3Dshape-based screening, and 
electrostatic complementarity have lead to the discovery of NED-19, a potent nanomolar 
antagonist of NAADP [22] (Figure 6).
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Figure 6: Depiction of ligand based virtual screening process used to develop NAADP 
antagonist. (The figure is partly adapted from reference [22]).

Outcome: NED-19 is one of the rare success story, where the integration of biology, virtual 
screening and medicinal chemistry have lead to the development and commercialization of novel 
chemical tools for calcium signalling [22].

The steps followed for HTVS are as follows:

1. Generation of 40 three-dimensional D conformers of the NAADP molecule (query) and 
100 conformations of each ligand molecule in the ZINC database (zinc.docking.org)5 were 
generated using Omega [27]. Command line options for omega;

Omega2 –in query molecule name.sdf –out conformers.oeb.gz –maxconfs 100

(Option maxconfs is used to set the maximum number of conformers to be generated)

2. The structures of NAADP were made in ChemDraw and energy minimized with MMFF94 
force field. For NAADP, all oxygen-phosphate bonds were set to single, approximating 
phosphate resonance shape. 

3. The 3Dshape comparison was performed using ROCS [27] based on the shape Tanimoto 
coefficient [6].
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a. Firstly the output is changed to a compact form:

rocs –dbase <database name.oeb.gz> -query <query name.sdf> -prefix out_oeb –besthits 500 –
oformat oeb

b. Command for 3Dshape matching:

rocs –dbase <database name.oeb.gz> -query <query name.sdf> -prefix tversky –besthits 500 –oformat 
oeb.gz rankby tanimoto

(Tversky measure ranks molecules biased towards the query molecule; Tanimoto quantifies the 
3Dshape-based match score) 

c. Command for 3D chemistry alignment:

rocs –dbase <database name.oeb.gz> -query <query name.sdf> -prefix colour -besthits 500 –chemff 
ImpilcitMillsDean

4. Ranking is done on the basis of the total score as the sum of shape Tanimoto coefficient 
[6] and color score [28] (“1” shows a complete overlap (same shape) and “0.5” means 50% 
overlap)

5. The top 500 molecules with the highest score were output in rank order as potential hits 
[6,27,44].

6. These 500 molecules from ROCS were used for electrostatic comparison to NAADP 
molecule using EON software. Two EON runs were performed. In the first run, lowest 
energy conformer of NAADP was electrostatically compared with 500 top molecules 
from ROCS hit molecules.  In the second run, all 40 conformations were electrostatically 
compared with top 500 hit molecules obtained from ROCS. For NAADP, all phosphates 
were protonated and modelled as neutral molecules, and oxygen-phosphate single bonds 
were converted to double bonds. Command line options for using EON:

eon –dbase rocs_hits.oeb –query rocsquery.sdf –besthits 100.

(ROCS query is used as the EON query and ROCS hits file is used as the database file for EON; the 
hits are saved in EON_hits.oeb file). The ranking was done based on electrostatic Tanimoto 
score, which ranges from 1 (identical) to negative values resulting from the overlap of 
positive and negative charges.

7. The top 10 hits after the initial EON screen and the top 15 Ned hits (5 new compounds) in the 
second EON screen were selected for in vitro testing. This study leads to the identification 
of NED-19 as a potent nanomolar NAADP antagonist.

8. Biological assay validation.
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CONCLUSION AND OUTLOOK
In summary, the present chapter describes the usefulness of HTVS in identifying potential hits 

for unique and unexploited targets. HTVS, to date, has provided novel chemical scaffolds for drug 
discovery as well as small molecule pharmacological tools for the fundamental understanding of 
biological processes. The effectiveness of HTVS can be further enhanced by introducing better 
docking scoring function and similarity predictions. Furthermore, development of better force-
field parameters for small molecules would be helpful. Recent success in fragment-based HTVS is 
promising. There are still many years of fruitful research waiting before we can fully appreciate 
the applications of HTVS in drug discovery. Recent high profile investments of pharmaceutical 
giant Sanofi and philanthropist Bill Gates will provide necessary boost in computational drug 
discovery informatics to develop cutting edge virtual screening technologies for drug discovery 
efforts [49].

NOTES
1. In the ligand-centric approach, some research groups include pharmacophore matching 

and QSAR matching but we consider these as another variant of either shape or electrostatic 
based.

2. Currently, the Maybridge database consists of 53000 diverse molecules and can be 
downloaded from www.maybridge.com. NCI version 2.2 has >250000 compounds at 
present and is accessible from cactus.nci.nih.gov and USA Food and Drugs Administration 
(FDA) approved drugs is available at http://www.fda.gov/Drugs/).

3. NCI version 2.2 has >250000 compounds at present and is accessible from cactus.nci.nih.
gov whereas eMolecules database consist of 5.9 million compounds and is accessible from 
www.emolecules.com

4. In rigid molecules, please note that conformational sampling could be achieved before the 
cut-off 100 is exhausted.

5. The Zinc database is available at zinc.docking.org and presently comprises of 35 million 
molecules.
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ABSTRACT
An introductory course is presented for the aspiring user of Molecular Dynamics (MD). No 

specialist terms are used in the discussion, which employs the language of basic chemistry and 
physics. The dynamics of the particles are introduced through their mutually interactive forces 
and the laws of motion. The forces on the atoms are explained as also are the means of specifying 
them. The use of quantum chemical methods to calculate partial atomic charges and molecular 
geometries is outlined. Some concepts relevant to the appreciation of MD results - radial 
distribution, mean force and velocity autocorrelation - are introduced and comments are made 
on the probable future of the subject.

Keywords: Molecular dynamics; Simulation; Relaxation; Migration; Protein folding; Nucleic 
acids.

Introduction to the Molecular Dynamics of 
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INTRODUCTION
Human beings have a passion for modeling. Both fictional and non-fictional literature are 

projections, or models, of the real world on the pages of a book, and the resulting editing of the 
original data refines the events or message that the author wishes to convey. In the same way, 
toy soldiers, space fleets and dolls houses are projected into the world of the young - images 
which active imaginations endow with properties and powers. Receptive minds then observe and 
manipulate them in a way denied to the objects from which they were derived. 

As researchers we wish to investigate the behavior of atoms and molecules as they re-conform, 
transverse a condensed medium, progress in channels penetrating a cell membrane, dock on a 
substrate or intercalate into DNA [1]. But their small sizes make the direct observation of their 
behavior as hard to attain as it would for a young modeller to direct objects in the real world. So 
we reprise our modeling activity. 

Molecular Dynamics (MD) emulates the motions of atoms and molecules in real time. Since 
it is conducted for atoms or molecules or small groups of them, it can provide details of events 
which elude experimental measurement and elucidate various types of molecular motions such 
as transport (Figure 1) or the motion and folding of protein chains [2]. It is widely used to model 
ions or small molecular species as they migrate through a medium or to elucidate the passage of 
Na+ or Cl− ions through a cell membrane, in a natural [3] or synthetic [4] ion transporter (Figure 
1).
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Figure 1: Migration of Na+ in a synthetic ion channel of six Crown Ether (CE) rings mounted on a 
peptide chain shown symbolically in (a) to (c). In (c) some of the peptide alkyl chains have been 
removed to reveal the crown ether channels. In the lower diagram the traces show the distance 

of the ion migrant from each CE ring.
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THEORY AND DATA INPUT
General

An assembly of N atoms or molecules is represented by charged point masses and its 
components referred to as particles. They will occupy an orthogonal cell each of whose six faces is 
surrounded by an identical cell (Figure 2) which is in turn in contact with a sextuplet of identical 
cells and the image is extended indefinitely. In this model we see that a particle crossing a face 
into an adjoining cell is immediately replaced by an identical one arriving from the opposite face.

Figure 2: MD unit cell.

The particles’ mutual interactions constitute a force field which is generated by a force on each 
particle A, given by FA= fAB where fAB is the force exerted on particle A by particle B. We first 
consider the unrealistic scenario in which the whole particle assembly is at instantaneously rest. 
Now particle A is not at equilibrium as it is subject to forces from the remaining N-1 particles. In 
fact A responds to the net force by embarking on an accelerating trajectory for a femtosecond-long 
timestep (10–15 s). During this brief interval all the other particles also simultaneously undergo 
displacements to positions from which they impose a new set of forces on the remainder, which 
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in turn move off to new positions in the course of the second timestep. The particle system has 
become dynamic. 

In a normal MD calculation the particles do not start from rest but are assigned a set of 
initial velocities which match those of the Maxwell-Boltzmann distribution appropriate to that 
temperature. Consider the particle’s altered environment between instants ti and ti+1. In the 
course of that interval, (timestep Δt) the particle changes its position to xi+1, its velocity to vi+1 and 
its to acceleration ai+1. Application of newtonian dynamics to a small interval Δt gives

   

      (1)

   

      (2)

The Forces

The forces generated not only cause the atoms to accelerate but the molecules to deform in 
ways that are calculated from the set { }A

Bf  described in the previous section. The force between 
a pair of atoms A and B separated by a distance xAB is derived from a set of atom-pair energy 
functions ( ){ }ABV x : 

       

       (3)

The functions {V} from which these forces (which may extended from pairs AB, to triads ABC, 
etc.) are derived are commonly referred to as atom potentials. 

To describe the set of contributions ( ){ }ABV x  for this chapter presents a dilemma of choosing 
between (a) explicit atom potentials whose functional forms transparently reflect the interaction 
expressed, and which can be applied to any atom species in a molecular system and (b) non-
explicit ‘black box’ force fields designed for the investigations of specific systems such as proteins 
or nucleic acids. For reasons of generality and transparency we follow course (a); however the 
user may retain the option of selecting or formulating implicit force fields for course (b) which 
may carry claims of reliability as they are purpose-built for specific classes of molecular system 
and which may be incorporated in the MD software.

The atom potential functions describing interactions involving atoms A, B, C, … constituting 
the molecular system that is to be simulated may be classified into (I) bonded potentials if the 
group of atoms are sufficiently close for some of them to be associated with chemical (valence) 
bonds; otherwise (II) their interaction would be by non-bonded potentials.

( )21
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(I) Bonded Potentials

 1. Bond stretching potential ( )AB
bV r

The force accompanying the compression or extension of a valence bond A-B from r0 to r may 
be derived from an atom-pair harmonic potential:

  

      (4)

An alternative bond pair distortion potential is the Morse function eqn. (5), which allows the 
rupture of the bond, an event not permitted in eqn. (4):

      (5)

where D is the depth of the energy well (roughly the bond energy) and a (a function of D) 
contains the bond’s stretching force constant kAB: 

 2. Bond angle potential ( )ABC
baV θ

A harmonic potential is often employed to describe the distortion of a bond angle A-B-C from 
its equilibrium value θ0 to θ:

      (6)

where KABC is the bending force constant associated with the atom triad ABC. 

 3. Torsional potential ( )ABCD
torsV φ

This potential measures the energy change when a bond is twisted and can be used in 
simulating π bonds. In a bond B-C let atom B be bonded also to A, and atom D to C. Then the atoms 
A-B-C-D are in the intersecting planes ABC and BCD. When the group is viewed along the B-C line a 
twist of the A-B and C-D bonds about B-C is measured by the dihedral angle ϕ between the planes. 
Such torsion about B-C causes ϕ to trace a periodic variation of the potential energy. If ϕ0 is the 
minimum-energy angle, the torsional energy for an m-fold barrier of magnitude v in the range 0 < 
ϕ < 360° could be described by

( ) ( )2
0

1
2

AB
b ABV r k r r= −

( ) ( ){ }0
2

1 1a r rAB
bV r D e− − = − −  
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                (7)

where δ is a phase angle defining the angular positions of the ABCD
torsV  minima.

 (II) Non-bonded potentials 

  5. Coulomb potential ( )AB
coul ABV r

The potential energy contributed by the electrostatic forces on a pair of atoms A,B separated 
by a distance rAB with partial charges qA and qB is

          (8)

Here any solvent molecules present are assumed to be explicitly included in the MD system so 
that the principal charge-screening effects are accounted for in the responses of the solvent atoms. 
If the solvent is described as a bulk medium effect an effective dielectric constant D is included in 
the denominator of eqn. (8).

Van der Waals potential ( )AB
vdW ABV r

The condensation of gases shows that atoms exert mutual attraction at large separations. But 
due to the lack of accurately known interaction energies for widely separated atom pairs this 
contribution is probably the least reliably known component of any force field. Commonly used 
formulations are based on structure-optimizing methods that reproduce experimentally-derived 
molecular geometries or, for simple solvent molecules that permit thermodynamic properties 
to be derived which are in accord with measurement. This has resulted in the two approaches 
mentioned at the start of Section 2.1.

Firstly, simple recipes have been proposed to calculate ( )AB
vdW ABV r  with the ambitious purpose 

of providing ‘universal force fields’ for all the atoms of the Periodic Table. Two common forms for 
the interaction between a pair of non-bonded atoms A and B are the Buckingham and Lennard-
Jones potentials, which have the respective forms                  

      (9)

and      

      (10)
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both of which describe energy wells rising sharply at diminishing separations rAB compared 
with the weakly negative energies at larger rAB. Of the two formulations, eqn. (10) is the more 
transparent, with ɛ measuring the depth of the potential well (from zero energy at rAB = ∞) and 
rm the value of rAB at this point. The first term on the right hand side in each of eqns. (9) and (10) 
describes the strong Pauli repulsion as A and B approach to small separations and the second 
uses the London dispersion energy r-6 dependence of the attractive interaction (which appears 
also in the van der Waals theory of interaction between gaseous molecules). Figure 3 shows a 
comparison of the interaction energies in a pair of bonded and non-bonded carbon atoms.

Figure 3: Atom-pair potentials for two bonded carbon atoms (main) and for two non-bonded 
carbons at various separations r (inset). The bonded potential is from a Morse function (eqn. 

(3)) and the non-bonded is from a Lennard-Jones equation (eqn. (10)).

Secondly, the extensive application of MD to biological systems has resulted in the proposals 
of several sets of atomistic force fields applicable to specific ‘atom types’ in this category. Different 
parameters would then be assigned to atoms of the same species but in different chemical 
environments (for example a C atom which may be in a -CH2-, -CO- or a phenyl group, or an oxygen 
present in hydroxyl, carboxylic etc.). If the system being simulated is large as for a protein system, 
containing thousands of atoms, for economy of computing times the simulation may be ‘coarse-
grained’, i.e. not all the atoms are explicitly treated in the simulation. Typically the two H atoms in 
methylene or the three in methyl might be subsumed into the carbon atom and the resulting -CH2- 
or -CH3 ‘bead’ treated as a single pseudo-carbon atom with its own set of atomistic parameters [5].

The total interaction energy between atom A and all the others is the sum of the contributions 
expressed in eqns. (4) to (10):
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       (11)

To describe hydrogen bonding e.g. =O....H−, although pair potentials OH
nbV  have been proposed, 

it is usual to describe the association using the Coulomb charges on O and H and applying eqn. (8). 

Available Force Fields for Simulation

As there are too many of these for concise inclusion in this chapter the interested reader is 
encouraged to find the items in the literature. They fall into two groups - those that were developed 
for use with proteins, polypeptides and nucleic acids (AMBER, CHARM, GROMOS etc.) and others 
of more general application (DREIDING, OPLS, UFF etc.).

For water as a solvent we refer to a common potential TIP3P [7] which are taken to be a 
rigid molecule with atomic charges that reproduce the molecular dipole moment and other bulk 
properties.

Range of the Force Field

The periodic boundary conditions in eqn. (11) in principle require the calculation of an infinite 
number of the non-bonded terms AB

coulV  and AB
vdWV  terms in (8) to (10). The rAB

-6 factor in AB
nbV  in 

eqns. (9) and (10), however, ensures a rapid convergence of this term with distance (and a realistic 
cutoff of about 9Å is usually imposed around atom A). The convergence of the Coulomb potential 
with rAB

-1 in eqn. (8), on the other hand, is too slow for a cutoff to be appropriate. The problem 
is overcome by the incorporation of an Ewald summation in the MD program. This consists of 
computing a short-range summation in real space combined with a long-range contribution 
evaluated employing a Fourier transform into reciprocal space, resulting in tractable summations.

Partial Atomic Charges and Molecular Geometry

The Coulomb energy using eqn. (8) requires a set of partial electrostatic charges {qi} on the 
atoms. These may either be inferred from recipes for formal charges and atomic electronegativities 
[8] or better, by performing a quantum chemical calculation on the static molecular species [9], 
[10]. 

The initial geometries of the molecules in the MD input can be taken from diffraction or 
spectroscopic data on the species or, if unavailable, on a simpler molecule with similar structural 
features. Alternatively the structure may be obtained from quantum chemical calculations on the 
molecule (or its model) with the ‘geometry optimization’ option in place. Of course the geometries 
into which the system is relaxed by the MD is consistent with the force field potentials in eqn. (11) 
but not necessarily with the ‘gas phase’ optimum quantum chemical geometry produced by the 
quantum calculations which were performed as a guide to conformations. 

A AB ABC ABCD AB AB
B b c ba D tors coul vdWV V V V V V   = ∑ +∑ +∑ + +   
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Since electronic wave functions are used to calculate charges and energies, the user must 
select a suitable method and basis set [11]. Quantum chemical code packages are available, from 
which Density Functional Theory (DFT) at a B3LYP level may be deployed. Because of the lower 
criticality of the molecular geometry referred to in the previous paragraph, a 6-31G (d,p) basis set 
is probably sufficient, but to obtain reliable atomic charges for use in eqn. (8) diffuse functions 
are recommended e.g. 6-31+G (d,p). There is little consensus on which definition of partial atom 
charge should be used - common ones are Mulliken populations, Natural Population Analysis 
(NPA), Atoms in Molecules (AIM) etc. The properties calculated using these definitions and tested 
against experiment (e.g. pKa) seem in fact to be best predicted by NPA charges [9].

Run Times

An MD run would involve the sequence of a large number of femtosecond timesteps to 
simulate a real time event on a molecular scale. The Einstein-Smoluchowski equation λ = √2Dt 
[12] predicts that the mean time for a particle to migrate a distance λ = 1Å in an aqueous medium 
with diffusivity D is about 4 ps. If the molecular event of interest were the passage of a diffusant 
through a pore or molecular channel embedded in a 40Å thick bilayer membrane of a cell, the 
minimum simulation time would then be of the order of 0.1 ns, or 105 timesteps. In channel 
migration consisting of a series of simple passive Stokes diffusion episodes in an aqueous medium 
depending only on temperature, density and migrant concentration gradients the simulation, 
a satisfactory MD might require about a million timesteps. If the ion transporter or membrane 
were more complex, and the migration a series of specifiable active processes simulation of the 
transport processes would take some orders of magnitude longer. 

Input Data for a Molecular Dynamics Program

The atomic positions in the unit cell are defined by Cartesian coordinates which are obtained by 
calculation or from a molecular visualization program. The user selects a force field according to 
Section 2.1 and the partial atomic charges from calculations as described in Section 2.4. Additional 
input items include the required total running time for the MD and the system’s temperature and 
pressure. While a thermally coupled thermostat ensures that the runs are performed at constant 
temperature, the user must specify whether the volume or the pressure is to be held constant. 
(If the systems involve membranes other restrictions too may be applicable.) Time intervals are 
specified at which the structure and other episodes of the atomic system are to be monitored. 

Having performed the required number of timesteps some ensemble-averaged and time-
averaged properties are calculated. Output files include the atomic positions, velocities and forces 
at the monitoring times. From these, the program calculates diffusion coefficients of migrants and 
other features (Section 3) that characterize the dynamics, which may be derived from the atom 
trajectories. Some quantities, particularly those associated with the time-evolving structure, may 
be recorded as ‘snapshots’ or animated graphics.
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MOLECULAR DYNAMICS OUTPUT
Radial Distribution Function g(r)

The Radial Distribution Function (RDF) describes the time-averaged structure of the system. 
Atom B in one molecule is part of the environment of atom A which is taken to be the origin of 
concentric spherical shells with separation Δr. If there is an average of nB(r) B atoms in the shell 
of radius r, the function

      (12)

measures the probability of encountering atom B at a distance r from A. At large r the rdf in 
eqn. (12) tends to unity. The two rdf curves gAB(r) in Figure 4 reflect the degree of order of two 
species of B atom surrounding A with B as a solvent- or ionic- atmosphere around A. Here a Na+ ion 
has entered a crown-ether based channel (mounted on the helical oligopeptide shown in Figure 
1) [4]. The red and blue traces respectively denote the probability of the Na+ migrant being found 
near the O and C atoms of the crown ether ring, showing that as expected for the electronegative 
oxygen (that bears an appreciable negative charge) the Na+ has a greater association with it than 
with the carbon atoms of the ring; the subsidiary O peaks are for atoms on further CE rings. At 
higher temperatures the reduced structural order results in shorter, broader peaks. 
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Figure 4: Radial distribution curves for Na+ ... O and Na+ ... C in a crown ether channel.
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Potential of Mean Force w(r)

This quantity describes the dynamics by keeping one part of the system fixed (constraining 
some element of the atomic configuration) [5]. The average force exerted by all the rapidly varying 
configurations of another component of the system is then monitored to derive the varying 
potential at these positions. The constrained quantity might be the instantaneous position of a 
migrant species in the ion transporter and the averaged quantities then constitute the potential 
of mean force from (for instance) the solvent molecules or bilayer membrane. Alternatively if 
the constraints were specified as atom-pair separations in the process investigated, w(r) could 
be used to monitor the process as the average work needed to bring the two atoms from infinite 
separation to one that at separation r. It is a free energy quantity, implicitly taking into account 
the redistribution of its molecular environment and is related to the system’s radial distribution 
function g(r), by

      (13)

The potential w(r) has been invoked as a tool to understand ion permeation and selectivity in 
membrane channels [13], and the dynamics of confined polymers [6].

Velocity Autocorrelation Function G(t)

The dynamics may be characterized by following the change of a quantity - in this case the 
velocity of a particle species - with time [14]. Let the velocity of a particle be v0 at time 0 and vt at 
time t, where v is a three-component vector (vx, vy, vz). If the particle’s trajectory during this interval 
were free then vt = v0 for all t and the scalar product (v0, vt) would be 2 2 2 2 2

0 0 0 0t x y zv v v v v= + + =
. However due to effects from the other particles the particle’s velocity varies with time and the 
value of (v0, vt) depends on the particle’s trajectoral history up to time t. As t becomes large the 
randomness of the magnitudes and directions of the other N particles causes scalar product (v0, 
vt) to diminish, sometimes with brief oscillations (Figure 5). After attaining zero at long times the 
scalar product indicates that vt has lost all ‘memory’ of its time-evolution. In practice the velocity 
autocorrelation function Gv(t) is defined as 

      

      (14)

by averaging over ‘time windows’ with different end points t0 and tN. The function Gv(t) in eqn. 
(14) can be a sensitive parameter for a particle’s dynamic interaction with its environment up to 
time t. 

( ) ( )lnw r kT g r= −

( ) ( ) ( )1 0
1 .N

v i i iG t v t v t
N == ∑



87Software and Techniques for Bio-Molecular Modelling | www.austinpublishinggroup.com/ebooks
Copyright  Morton-Blake DA. This book chapter is open access distributed under the Creative Commons Attribu-
tion 4.0 International License, which allows users to download, copy and build upon published articles even for 
commercial purposes, as long as the author and publisher are properly credited. 

Figure 5: Velocity autocorrelation function.

SOME CURRENT APPLICATIONS AND THE FUTURE TREND OF 
MOLECULAR DYNAMICS

Although other computational methods e.g. Molecular Mechanics and Monte Carlo simulations 
also emulate chemical and physical changes for systems which may be inaccessible to experiment, 
the fact that MD does so in real time (albeit on scales expanded by ~1016 for running times!) 
enables it to propose mechanisms for the transport of ions in synthetic monolayers [15], to reveal 
the dynamical behavior of lipid bilayers [16] and their permittivity to the migration of species 
[3]. These studies include the energetics of ion conduction through K+ channels [17], the docking 
of drug molecules [18], DNA-ligand interactions and charge migration and the folding/unfolding 
of nucleic acid duplexes [19,20] and ion transporters including synthetic molecules in model 
biological systems [4].

A limitation of current MD is the unavoidable shortness of the femtosecond timestep that 
is necessary to integrate the equations of motion in Section 1. Consequent difficulties are 
its application to the common chemical and physical processes in the micro- or millisecond 
timescales of conformational changes in bio-macromolecules, for which extremely long running 
times would be required. Brute force methods using high computational power have indeed been 
applied to electrochemical processes involving enzymes on electrodes with times of the order of 
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microseconds [21], and even millisecond long protein-foldings have been simulated [2]. But the 
timescale problem has also been countered by other remedies. Consider for example a system 
in which the particle dynamics are normal but the special interest to the user (for example the 
passage of a migrant through the mouth of a channel) is a rare event. Then ‘Steered MD’ [22] or 
Interaction MD [23] methods may be deployed, both of which employ an interactive approach to 
ensure that the particle system is close to the configuration at which the special effect (channel 
entry) occurs.

The quantum behavior of mobile hydrogen atoms (and other small atoms) renders the 
particles invalid for description by the laws of motion of ‘classical’ particles. The dynamics of a 
hydrogen bond binding the base pairs in DNA or that may be involved in a [=O...H−O− ↔ −O−H...
O=] tautomerism defy a description by MD. They must instead be treated by ‘hybrid’ methods 
embodying quantum theory [24].

As computing power and methodologies develop it is envisaged that molecular dynamics will 
eventually be subsumed into all-quantum ab initio methods. This will obviate the component 
terms in eqn. (11) as the electronic charges, the binding and the current uncertain non-bonding 
terms eqns. (9) and (10), all of which actually continuously change within the MD time period. 
The dynamics of the atoms too, free of Born-Oppenheimer restrictions, will be fully described by 
quantum theory, a procedure which hitherto has been initiated for simple systems [25], but which 
will ultimately constitute a fundamental principle of molecular dynamics.

References
1. McCammon JA, Harvey SC, Dynamics of proteins and nucleic acids, Cambridge: Cambridge University Pres. 1987. 

2. Lindorff-Larsen K, Piana S, Dror RO, Shaw DE. How fast-folding proteins fold. Science. 2011; 334: 517-520. 

3. de Groot BL, Grubmüller H. The dynamics and energetics of water permeation and proton exclusion in aquaporins. Curr Opin 
Struct Biol. 2005; 15: 176-183. 

4. Morton-Blake DA. Diffusion phenomena in engineering materials. Belova I, Murch G, Öchsner A. editors. In: Diffusion Foundations 
4, Aug. 2015; Chapter VI. 

5. Müller-Plathe F. Coarse-graining in polymer simulation: from the atomistic to the mesoscopic scale and back. Chemphyschem. 
2002; 3: 755-769. 

6. Eslami H, Varzaneh HAK, Müller-Plathe F. Coarse-grained computer simulation of nano confined polyamide-6,6, Macromolecules. 
2011; 44: 3117-3128. 

7. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. Comparison of simple potential functions for simulating liquid 
water. J. Chem. Phys. 1983; 79: 926-935. 

8. Abraham RJ, Grant GH, Haworth IS, Smith PE. Charge calculations in molecular mechanics. Part 8. Partial atomic charges from 
classical calculations. J Comput Aided Mol Des. 1991; 5: 21-39. 

9. Gross KC, Seybold PG, Hadad CM. Comparison of different atomic charge schemes for predicting pKa variations in substituted 
anilines and phenols, International Journal of Quantum Chemistry. 2002; 90: 445-458. 

10. Thompson JD, Xidos JD, Sonbuchner TM, Cramer CJ, Truhlar DG. More reliable partial atomic charges when using diffuse basis 
sets. Phys Chem Comm. 2002; 18: 117-134. 

11. For basis sets see https://www.shodor.org/chemviz/basis/teachers/background.html. 

12. Atkins P, de Paula J. Physical Chemistry, 8th edition, Oxford: Oxford University Press. 2006, Chapter 21. 

https://books.google.co.in/books?hl=en&lr=&id=OXDS3Oq2QYIC&oi=fnd&pg=PR11&dq=1.+McCammon+JA,+Harvey+SC,+Dynamics+of+proteins+and+nucleic+acids,+Cambridge:+Cambridge+University+Pres&ots=5vhtR3vzkU&sig=NcqoqghBF-k0UwZqXETDiXELvGM#v=onepage&q=1. McCammon 
http://www.ncbi.nlm.nih.gov/pubmed/22034434
http://www.ncbi.nlm.nih.gov/pubmed/15837176
http://www.ncbi.nlm.nih.gov/pubmed/15837176
http://www.ncbi.nlm.nih.gov/pubmed/12436902
http://www.ncbi.nlm.nih.gov/pubmed/12436902
http://pubs.acs.org/doi/abs/10.1021/ma102320v
http://pubs.acs.org/doi/abs/10.1021/ma102320v
http://scitation.aip.org/content/aip/journal/jcp/79/2/10.1063/1.445869
http://scitation.aip.org/content/aip/journal/jcp/79/2/10.1063/1.445869
http://www.ncbi.nlm.nih.gov/pubmed/2072123
http://www.ncbi.nlm.nih.gov/pubmed/2072123
http://onlinelibrary.wiley.com/doi/10.1002/qua.10108/abstract
http://onlinelibrary.wiley.com/doi/10.1002/qua.10108/abstract
http://pubs.rsc.org/en/Content/ArticleLanding/2002/QU/b206369g#!divAbstract
http://pubs.rsc.org/en/Content/ArticleLanding/2002/QU/b206369g#!divAbstract
https://www.shodor.org/chemviz/basis/teachers/background.html
https://www.shodor.org/chemviz/basis/teachers/background.html
http://exordio.qfb.umich.mx/archivos pdf de trabajo umsnh/Leer escribir PDF 2014/CH-Physical Chemistry(8th ed)%5b%E8%8B%B1%E8%AF%AD%5dAtkins.pdf


89Software and Techniques for Bio-Molecular Modelling | www.austinpublishinggroup.com/ebooks
Copyright  Morton-Blake DA. This book chapter is open access distributed under the Creative Commons Attribu-
tion 4.0 International License, which allows users to download, copy and build upon published articles even for 
commercial purposes, as long as the author and publisher are properly credited. 

13. Allen TW, Andersen OS, Roux B. Molecular dynamics - potential of mean force calculations as a tool for understanding ion 
permeation and selectivity in narrow channels. Biophys Chem. 2006; 124: 251-267. 

14. JJ Erpenbeck and WW. Wood. Molecular-dynamics calculations of the velocity-autocorrelation function, Phys. Rev A. 1982; 26: 
1648-1675. 

15. Morton-Blake DA, Leith D.  Molecular dynamics of ions in two forms of an electroactive polymer. Ann N Y Acad Sci. 2009; 1161: 
105-116. 

16. Lyubartsev AO, Rabinovich AL. Recent development in computer simulation of lipid bilayers. Soft Matter. 2011; 7: 25-39. 

17. Bernèche S, Roux B.  Energetics of ion conduction through the K+ channel. Nature. 2001; 414: 73-77. 

18. Gupta J, Nunes C, Vyas S, Jonnalagadda S. Prediction of solubility parameters and miscibility of pharmaceutical compounds by 
molecular dynamics simulations. J Phys Chem B. 2011; 115: 2014-2023. 

19. Barnett RN, Cleveland CL, Joy A, Landman U, Schuster GB. Charge migration in DNA: Ion-gated transport, Science. 2001; 294: 
567-571. 

20. Pérez A, FJ, Orozco M. Frontiers in the Molecular Dynamics Simulations of DNA, Accounts of Chemical Research. 2012; 45: 
196-205. 

21. Oteri F, Ciaccafava A, de Poulpiquet A, Baaden M, Lojou E. The weak, fluctuating, dipole moment of membrane-bound hydrogenase 
from Aquifex aeolicus accounts for its adaptability to charged electrodes. Phys Chem Chem Phys. 2014; 16: 11318-11322. 

22. Patel JS, Berteotti A, Ronsisvalle S, Rocchia W, Cavalli A. Steered molecular dynamics simulations for studying protein-ligand 
interaction in cyclin-dependent kinase 5. J Chem Inf Model. 2014; 54: 470-480. 

23. Grayson P, Tajkhorshid E, Schulten K. Mechanisms of selectivity in channels and enzymes studied with interactive molecular 
dynamics. Biophys J. 2003; 85: 36-48. 

24. Nunthaboot N, Pianwanit S, Parasuk V, Ebalunode JO, Briggs JM, et al. Hybrid quantum mechanical/molecular mechanical 
molecular dynamics simulations of HIV-1 integrase/inhibitor complexes, Biophysical Journal. 2007; 93: 3613-3626. 

25. Car R, Parrinello M. Unified approach for molecular dynamics and density-functional theory. Phys Rev Lett. 1985; 55: 2471-2474.

http://www.ncbi.nlm.nih.gov/pubmed/16781050
http://www.ncbi.nlm.nih.gov/pubmed/16781050
http://journals.aps.org/pra/abstract/10.1103/PhysRevA.26.1648
http://journals.aps.org/pra/abstract/10.1103/PhysRevA.26.1648
http://www.ncbi.nlm.nih.gov/pubmed/19426310
http://www.ncbi.nlm.nih.gov/pubmed/19426310
http://www.ncbi.nlm.nih.gov/pubmed/11689945
http://www.ncbi.nlm.nih.gov/pubmed/21306175
http://www.ncbi.nlm.nih.gov/pubmed/21306175
http://www.ncbi.nlm.nih.gov/pubmed/11641491
http://www.ncbi.nlm.nih.gov/pubmed/11641491
http://pubs.acs.org/doi/abs/10.1021/ar2001217
http://pubs.acs.org/doi/abs/10.1021/ar2001217
http://www.ncbi.nlm.nih.gov/pubmed/24789038
http://www.ncbi.nlm.nih.gov/pubmed/24789038
http://www.ncbi.nlm.nih.gov/pubmed/24437446
http://www.ncbi.nlm.nih.gov/pubmed/24437446
http://www.ncbi.nlm.nih.gov/pubmed/12829462
http://www.ncbi.nlm.nih.gov/pubmed/12829462
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2072063/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2072063/
http://www.ncbi.nlm.nih.gov/pubmed/10032153


90Software and Techniques for Bio-Molecular Modelling | www.austinpublishinggroup.com/ebooks
Copyright  Lee VS. This book chapter is open access distributed under the Creative Commons Attribution 4.0 
International License, which allows users to download, copy and build upon published articles even for commercial 
purposes, as long as the author and publisher are properly credited. 

Chong WL1, Gautam V1, Zain SM1, Rahman NA1 and Lee VS1*
1Department of Chemistry, Faculty of Science, University of Malaya, Malaysia

*Corresponding author: Vannajan Sanghiran Lee, Department of Chemistry, Faculty of 
Science, University of Malaya, Kuala Lumpur 50603, Malaysia, Tel: 603-79677022 ext. 2142; 
Fax: 603-79674193; Email: vannajan@gmail.com

Published Date: December 01, 2016

ABSTRACT
Graphic Processing Units (GPUs) that were first introduced for visualization particularly in 

gaming industry are now widely exploited in computational and theoretical research when CPU 
has reached its limitation to satisfy the speed demand if a macromolecular system is studied. 
It is a revolution of parallel computation that has been crucial to stimulate the growth of the 
computational study for various purposes. GPU-accelerated workstation surpasses that of 
conventional CPU as molecular properties of one nano second of a macromolecular system is 
now collectible within hours. Hence, it is the solution to the bottleneck of simulating a very large 
biological system like membrane. Apart from high speed, GPU-enabled machine is proven to 
save more energy and meeting the demand of green technology. With the advances available and 
increasing popularity, the cost involved in setting up a workstation that runs on GPUs would no 
longer be a burden.  Our group has successfully transformed the CPU workstations to run on GPUs 
by replacing the graphic card to a higher-end one together with some simple installation steps. 
GPUs have become a more powerful tool when CUDA is implemented and complementary to the 

GPU Accelerated Molecular Dynamics Simula-
tions in Predicting the Protein-Protein Binding 
Affinity from Residues Interactions within the 

Binding Surface
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machine. MD simulations that run on pmemd.cuda have been showing its outstanding speed and 
efficiency in finishing the submitted jobs. It would be useful if one needs to simulate a large system 
or a great number of systems. It has also made the protein design from MD simulations possible 
and of course the predictions would be more reliable and agreeable with observations reported 
from experimentalists. We have demonstrated some examples in text, which describes how a 
high-speed machine becomes essential and crucial in dissecting the protein-protein interactions 
(PPIs) which is normally a missing piece for experimentalists and also calculating the binding 
affinity that correlated well with reported findings.

INTRODUCTION
In the past 20 years, molecular modeling has advanced from simulating small system (<300 

atoms) to the routine modeling of entire proteins in solution with lipids and explicit water 
(30,000-100,000 atoms). This remarkable achievement has been in large part the result of the 
use of high-performance computing (HPC). However, simulations are still far from realizing 
the full potential of computational molecular biology because of the limited time scale (usually 
sub 1 μs) that they can practically achieve. The recent evolution of graphics processing units 
(GPUs) into general-purpose, fully programmable, high performance processors represents an 
important technological innovation that may realize the full potential of atomistic molecular 
modeling and simulation. To exploit the computational power of GPUs, it is necessary to redesign 
and reprogram algorithms to suit the architectures of these devices. There are over a hundred 
GPU-accelerated applications in computational chemistry field (Quantum Mechanics, Molecular 
Mechanics, Molecular dynamics) recently available and growing. McCammon and colleagues have 
reported the first molecular dynamics (MD) simulations on an enzyme in year 1977 [1] and since 
then MD simulations have evolved to become an important tool in rationalizing the behavior of 
biomolecules. The field is continuously progressing such that the molecular properties of a small 
enzyme with 500 atoms could be collected on the microsecond time scale [2−4] from the initially 
10-ps-long simulation and simulations containing millions of atoms can be considered routine 
[5,6]. Nonetheless, simulations are numerically very intensive, and employing conventional CPU 
centric hardware it requires access to large-scale supercomputers or well-designed clusters with 
expensive interconnects that are beyond the reach of many research groups.

Numerous attempts have been made over the years to accelerate classical MD simulations 
by exploiting alternative hardware technologies such as ATOMS by AT&T Bell Laboratories 
[7], FASTRUN by Columbia University and Brookhaven National Laboratory [8], MDGRAPE by 
RIKEN [9], and most recently Anton by DE Shaw Research LLC [10]. It is however the mentioned 
approaches have failed to make an impact on mainstream research because of their excessive 
cost. Additionally, these technologies have been based on custom hardware and do not form part 
of what would be considered a standard workstation specification. Such technologies have made 
the experiments difficult and hence the respective development and innovation are not sustained. 
It further limits them from being ubiquitous community-maintained research tools.
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Graphics processing units (GPUs), on the other hand, have been an integral part of personal 
computers for decades, and a strong demand from the consumer electronics industry has 
resulted in significant sustained industrial investment in the stable, long-term development of 
GPU technology. In addition to low prices for GPUs, this has led to a continuous increase in the 
computational power and memory bandwidth of GPUs, significantly outstripping the improvements 
in CPUs. As a consequence, high-end GPUs can be considered as standard equipment in scientific 
workstations, which means that they either already exist in many research laboratories or can be 
purchased easily with new equipment. This makes them readily available to researchers and thus 
attractive targets for acceleration of many scientific applications including MD simulations. The 
nature of GPU hardware has recently made their use in general purpose computing challenging 
to all but those with extensive three-dimensional (3D) graphics programming experience. The 
development of application programming interfaces (APIs) targeted at general purpose scientific 
computing has reduced this complexity substantially such that GPUs are now accepted as serious 
tools for the economically efficient acceleration of an extensive range of scientific problems [11,12]. 
The computational complexity and fine grained parallelism of MD simulations of macromolecules 
makes them an ideal candidate for implementation on GPUs. Modern MD algorithms implemented 
on GPUs is capable of performing for both, implicit and explicit solvent models [13], and exceeds, 
what is achievable with any current CPU-based supercomputer. A number of studies conducted 
previously have investigated the use of GPUs to accelerate MD simulations [14−20]. For a better 
insight of the use of GPUs for acceleration of condensed phase bio-molecular MD simulations, we 
refer to the recent review [12]. 

Availability of such high performance GPU implemented with implicit solvent generalized 
Born (GB) MD for the AMBER [21] and CHARMM [22], speeds up the simulation time, particularly 
in protein-protein system. We also aim to use high-performance GPU implementation pairwise 
additive force fields on CUDA enabled NVIDIA GPUs which are implemented within the AMBER 
[23,24] PMEMD dynamics engine in a manner  to be as transparent to the user as possible. The 
processing power of GPUs can be used both in serial and multiple and can achieve performance 
in comparison to conventional CPU clusters. Previous testing study revealed that use of a GPU 
was faster than using locally available CPUs (simulations using 1 GPU were ∼50% faster than 
those using 32 Xeon 3.4 GHz CPU cores). Moreover, GPUs provide promising systems for energy 
efficient scientific computing. It was found that use of a GPU consumed significantly less energy 
(∼3 MJ per nanosecond of dynamics using 1 GPU compared to 10 MJ per nanosecond of using 32 
CPU cores). Due to its high performance and proven efficiency in earlier studies, GPU was made 
the choice for the study.

In this study, we aim to accelerate several computational researches and engineering 
applications on molecular dynamics simulation with NVIDIA® Quadro® GPUs for the large time 
scale simulation for several novel bio-molecular / material systems such as membrane, antibody-
antigen, proteins, DNA, carbon nanotube, and ionic liquids. The expected outcome is to investigate 
the behavior of biological and material system under the large time scale simulation with graphics 
processing units GPU.
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GPU BUILDING AND SOFTWARE INSTALLATION FOR MOLECULAR 
DYNAMICS SIMULATION WITH AMBER

Several GPU-accelerated applications in computational chemistry field (Quantum Mechanics, 
Molecular Mechanics, Molecular dynamics simulation (MDs)) are listed in the NVIDIA website. 
(http://www.nvidia.com/object/gpu-applications.html, July 25, 2015). Our interest is in the use 
of molecular dynamics simulation with AMBER software that was introduced in version 11, with 
the ability to use NVIDIA GPUs to massively accelerate PMEMD for both explicit solvent PME 
and implicit solvent GB simulations with further extend improvement in AMBER 12 and AMBER 
14, we now can perform MDs with ~30% performance improvement for single GPU runs and 
have an additional support for multi-GPU runs providing enhanced multi-GPU scaling. Some 
considerations have to be made for MDs simulation on AMBER (http://ambermd.org/gpus/, 
July 25, 2015) for the supported features, supported GPUs and recommended hardware (http://
ambermd.org/gpus/recommended_hardware.htm, July 25, 2015), system size limits for implicit 
and explicit solvent simulations, accuracy considerations. With AMBER 14 the single and double 
precision models (SPSP, SPDP and DPDP) have been depreciated and replaced with a new hybrid 
model, SPFP that combines single precision calculation with fixed precision accumulation. Its 
accuracy is as good as or better than the original SPDP model. [25]

Detailed information on the implementation specifics, methods used that could perform with 
controlled accuracy, and respective validation are available for routine microsecond molecular 
dynamics simulations with AMBER - Part I: Generalized Born and Part II: Particle Mesh Ewald 
[26,27] 

Practically, GPU building and software installation for molecular dynamics simulation with 
AMBER can be done with three main steps for the modern desktop computer by adding the 
external GPU card. Quick steps and commands in setting up the GPU and software can be found in 
Appendix A while overview of the procedures could be found in Figure 1. With the introduction 
of CUDA, GPU has attracted more attention [28]. It brought a critical change in the field as CUDA 
could actually perform well with pmemd (AMBER) and it reported an impressive high speed, 
about 11 times faster than conventional CPU at the very first place [29].  CUDA has been widely 
exploited since then as GPU power could be increased and optimized. Pmemd program in AMBER 
is now evolving to pmemd.cuda that makes collection of molecular properties for 1 nano second 
possible in few hours with our less sophisticated yet economical machine (specifications are 
described in Table 1). Even though our GPUs may not able to outperform those high-end GPU that 
cost a few ten thousands USD dollars but they have moved our research a few steps forward with 
limited budget. As recommended by AMBER in using GPU cards manufactured by NVIDIA, we have 
performed some speed tests to compare Quadro card against their closest GeForce equivalents. 
Of the two higher-end GPUs we have, one runs on NVIDIA Quadro K2000 while another one on 
Asus Geforce GTX680. The price comparison to set-up simple desktop GPU for MDs simulation 
was listed in Table 1.
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Table 1: Price comparison for economical GPU for MDs simulations.

(As of Nov 11, 2015, 1 RM = 0.23 USD).

We have simulated a protein-protein complex that made up by 47502 atoms in total after 
water molecules and salt were added using the two workstations that run independently of each 
other. The required simulation time was 8.75 ns/day and 4.70 ns/day for workstation that runs 
on Asus Geforce GTX680 card and Quadro K2000, respectively.  In contrast, the simulation speed 
for similar complex was 0.11ns/day when it runs on sander (CPU). Apart from protein-protein 
system,  we have also observed that the performance in term of speed of the GPUs is in the order 
such that GTX680> K2000 > Q2000D in protein-ligand systems. Coupling the advanced GPU card 
with CUDA code, it opens a door for performing sophisicated study particularly mutation study 
which normally a time consuming and expensive process. Computational assay that investigated 
drug binding of neuraminidase H5N9 [30] has been reported and it indeed excites us as we can 
now gain insight into mutation that could either enhance or harm the binding activity. Probing 
the protein-protein interactions and to reveal the binding affinity have been a struggle before 
the GPU-enabled machine is made available. Kodchakorn et al. [31] had probed the binding 
activity between ankyrin repeat protein and maltose binding protein with pmemd.cuda code and 
were able to predict the absolute binding affinity which is comparable to experimental results. 
However, the data produced would be questionable if it is not concluded from long time-scaled 
MD simulations. Apart from speed, energy conservation would be another concern as some 
calculations are relatively expensive. As reported elsewhere, GPUs are observed and proved to be 
more energy saving compared to CPUs with improved performance. In short, transfroming a CPU 
to GPU is simple with few steps as decribed earlier and it is much more afforadable. Wherener 
there is a demand of very high speed calculation, one needs to consider to have to a higher-end 
graphic card installed. Together with pmemd.cuda, a GPU will absolutely empower the machine 
to accelerate the calculations effectively.

HP workstation Z220 (RM 3990) Customised Intel workstation  (RM 5995)
Power 400W

Intel core i7-3770 3.4GHz
8GB (2x4GB) DDR3-1600 nEcc RAM

4 cores 
2 x NVIDIA K2000 GPU cards with 2GB RAM

(128 bits)
(Note: Single NVIDIA K2000 = RM 2090) 

Power 650 w
Intel core i7 4770K 3.5 GHz
16GB (2x8GB) DDR3 RAM

4 cores
Asus GTX 680 with 2GB DDR5 (256 bits)

(Note: Single GTX 680 = RM 1930)
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Figure 1: Steps in GPU building and software installation for molecular dynamics simulation 
with AMBER. For more information, 1) Installation of NVIDIA driver. (http://www.nvidia.

com/Download/index.aspx?lang=en-us) 2, July 25, 2015) Installation of CUDA programming. 
(https://developer.nvidia.com/cuda-downloads) 3) Installation Amber12 and Ambertools13. 

(http://jswails.wikidot.com/installing-amber12-and-ambertools-13, July 25, 2015).

RESIDUE INTERACTION IN THE BINDING SURFACE OF PROTEIN-
PROTEIN COMPLEX THAT CONTRIBUTED TO BINDING AFFINITY 
FROM ACCELERATED GPU MOLECULAR DYNAMICS SIMULATIONS

The binding free energy and identification of the hot-spot residues of proteins can be achieved 
using the Molecular Mechanics–Poisson-Boltzmann Surface Area/Generalized Born Surface Area 
(MM-PPSA/GBSA) protocols from molecular dynamics simulation which can be run in longer 
time scale via accelerated GPU. The aforementioned protocols have been exploited to study 
different protein-ligand [32-35] and protein-protein interactions [36]. In addition, calculation 
for each energy term can be performed without a large training set that fits various parameters 
under Molecular Mechanics–Poisson-Boltzmann Surface Area/Generalized Born Solvent Area 
(MM-PBSA/GBSA) protocol [37] has made it an advantage to be more efficient to that of free 
energy perturbation (FEP) and thermodynamic integration (TI) methods [38]. In general, the 
complex structure for protein-peptide and protein-protein complexes need to be prepared. The 
initial structure of the specific complex system can be taken from the X-ray structure from protein 
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data bank (PDB). However, if no complex structure is available, the initial structure for protein-
peptide and protein-protein complexes can be predicted and generated using molecular docking 
software eg. Autodock [39], Zdocker [40] and SwarmDock [41]. All missing hydrogen atoms for 
each system can be added using the LEaP module in AMBER later.  The predicted ionization states 
for amino acid residues with potentially charged side chains will be calculated. All systems can 
be solvated using TIP3P water in a 20Å3 box using Na+ or Cl− as the neutralizing counterion. The 
more forcefields should be added like ff12SB [42] are used to model the protein.  Figure 2 shows 
the flow chart for the molecular dynamics simulations for protein-peptide and protein-protein 
binding affinity via accelerated GPU.

Figure 2: The flow chart for the molecular dynamics simulations for protein-peptide and 
protein-protein complex.
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To elaborate in details how GPUs have assisted our work, we have taken one of our systems 
as example. Complex of designed ankyrin repeat (AR) structures of integrin-linked kinase (ILK) 
with PINCH1 were simulated to probe the binding affinity, protein-protein interactions and 
important residues that are involved in the interaction with target [43]. It has been found that the 
heterotrimeric complex between integrin-linked kinase (ILK), PINCH, and parvin is an essential 
platform for signaling and serve as a convergence point for integrin and growth-factor signaling 
and regulating cell adhesion, spreading, and migration. The molecular basis of ILK-PINCH 
interactions was revealed by a crystal structure of the ILK ankyrin repeat domain bound to the 
PINCH1 LIM1 domain and providing a structural description of this region of ILK. Five ankyrin 
repeats in ILK have been identified by this structure. The data provides an atomic-resolution 
description of a key interactions in the ILK–PINCH–parvin scaffolding complex [44]. The initial 
structure of the ILK Ankyrin repeat domain bound to the PINCH1 LIM1 domain complex was 
taken from the x-ray crystallography structure with PDB ID of 3F6Q [44]. MD simulations at 
the molecular mechanics level were employed using ff12SB force field as implemented in the 
AMBER12 suite of program. The ankyrin-kinase complex were solvated in a cubic box of TIP3P 
water extending at 10Å in each direction from the solute with 9 Na+ ions added so as to neutralize 
counterions and the cut-off distance was kept to 20Å to compute the non-bonded interactions. The 
protein-protein complex was simulated  using PMEMD.CUDA from AMBER12 [45] on graphical 
processors (GPUs) Quadro 2000D produced by NVIDIA which speed up the simulation wall time 
required to obtain the trajectory files from each simulation. All simulations were performed under 
periodic boundary conditions, and long-range electrostatics were treated by using the particle-
mesh-Ewald method. Initially, the temperature of each system was increased gradually from 0 to 
310 K over a period of 60 ps of NVT dynamics. This was followed by 300 ps of NPT equilibration 
at 310.15 K and 1 atm pressure and then 10,000 ps of NPT-MD simulation was performed for the 
collection of properties. The structural properties and intermolecular interactions of the ankyrin-
kinase and PINCH1-LIM1 were analyzed from the MD trajectories of 10 ns . The binding free 
energy of the complex was calculated based on the MM-PBSA/GBSA protocol. In this study, the 
binding free energy of each system was calculated from 6-10 ns of the trajectories. 500 snapshots 
have been taken into the binding free energy and decomposed binding free energy calculations. 
The interaction energy profiles of ILK-AR and PINCH1-LIM1 were generated by decomposing the 
total binding free energies into residue-residue interaction pairs by the MM-GBSA decomposition 
process in the MM-GBSA program of AMBER12. The values of the interior and exterior dielectric 
constants in MM-GBSA were set to 1 and 80, respectively. The exploration of hot spots on ILK-AR 
and assessment of effects of amino acid residues on the binding affinity of Ankyrin and PINCH1 
in aqueous solution were discussed after long time scale molecular dynamics. Several important 
residues with energy < -2 kcal/mol on AR-ILK have been deduced to be critical in binding activity 
as described in Figure 3.
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Figure 3: The MM-PBSA/GBSA calculation (left) and the decomposition energy (kcal 
mol–1) versus significant amino acids residues of AR ILK in binding with PINCH during 6-10 ns 

simulations (right).

In another investigation in comparing the binding activity between the experimental and 
theoretical value was carried out with the aid of high-speed GPU molecular dynamics simulations, 
in designing ankyrin that binds specifically to ERK2 [46]. It is well known that, proteins undergo 
posttranslational modifications (PTMs) which play a crucial role in signal propagation and 
regulation of their functions. Up to 30% of all human proteins may be modified by kinase activity, 
and kinases are known to regulate the majority of cellular pathways, particularly those involved in 
signal transduction [47]. Kinase enzyme modifies other proteins by chemically adding phosphate 
groups to them [48]. Out of the many families of protein kinase, MAPKs are one of the most widely 
studied classes of signalling proteins [49], moreover, their own activity is controlled by a specific 
phosphorylation event. Extracellular signal-regulated kinase 2 (ERK2), a member of MAPK 
family; exists in two forms viz. Phosphorylated (active) and the non-phosphorylated (inactive) 
Figure 4. ERK2, undergoes phosphorylation to regulate several physiological and pathological 
phenomena, including inflammation, apoptotic cell death oncogenic transformation, tumor cell 
invasion and metastasis [50]. Overexpression of kinase associated phosphatases are implicated 
in many different cancers [51-53]. Hence, it is much desired to get binders for inhibition of 
overexpressed kinases for the control of cancer. Earlier most of the PTMs were studied using 
antibodies but owing to their improved stability and better binding, DARPins (Designed Ankyrin 
Repeat proteins) are replacing the conventional monoclonal antibodies [54]. In an attempt to 
explore the binding interactions of Ankyrins with the ERK2 forms, several DARPins from synthetic 
library were screened for their binding with ERK2, out of which DARPin E40 was found to have a 
good binding with ERK2 while pE59 was inactive towards it. The two DARPins differ in one repeat 
shown as highlighted residues (green) in figure 4. E40 consists 3 repeats while pE59 consists 2 
repeats. These DARPins showed no binding with any other kinase tested [55]. 
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Figure 4: Sequence Alignment of DARPins E40 and pE59 by ClustalW, showing similarity. 
Structures of E40/ERK2 and pE59/ERK2. Residues different in DARPins, E40 are shown in 

green.

In order to find a theoretical justification of the above observations, crystal structure of E40 and 
pE59 in complex with ERK2, were studied for their interaction. Starting structure of the complex 
was taken from the PDB database (PDB ID 3ZU7). We have applied similar MD simulations protocol 
on the protein-protein system. In this study, the binding free energy of each system was calculated 
from 6-10 ns of the trajectories. The values of the interior and exterior dielectric constants in 
MM-GBSA were set to 1 and 80, respectively. Two DARPin-kinase complexes were studied in 
order to find out the binding interactions. Binding energy data (GBTOT) indicates, good binding 
affinity between E40 and ERK2 while that is not found between pE59 and ERK2. The theoretical 
results expressed as Kd (Dissociation constant) correlates well with the experimental findings 
(GBTOT) as tabulated in Table 2. This finding leads to results where theoretical calculations 
produced reliable binding affinity prediction of DARPin-kinase. It was concluded that DARPin E40 
has a better binding towards kinase, ERK2 while pE59 showed poor activity. These observations 
suggest that E40 could be a promising binder for ERK2. 
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Performing computational investigations allow us to view the interactions established 
between the proteins at molecular level, which is not possible to be observed in laboratory. The 
predictive power of computational approach has been improved and simulation results found are 
as close as the reported laboratory results. Therefore, computational tool is not only producing 
merely a prediction but also explanation of the mechanism involved in a particular system.
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APPENDIX A:  EXAMPLE ON GPU AND SOFTWARE INSTALLATION 
FOR MOLECULAR DYNAMICS SIMULATION WITH AMBER

The example here is for Ubuntu 12.04, NVIDIA-Linux-x86_64-310.32, CUDA 5.0, and AMBER12.

1. Install Nvidia driver

2. Install CUDA programing

3. Install AMBER12 and Ambertools12

Install NVIDIA driver

•	 Get the driver for your GPU from the following web

  http://www.nvidia.com/Download/index.aspx?lang=en-us

•	 Check your GPU spect

 $sudo lshw -short

 or $lspci -v

•	 Install driver in /home/username

 $chmod +x NVIDIA-Linux-x86_64-310.32.run

 $./NVIDIA-Linux-x86_64-310.32.run

Table 2: Comparison of the experimental and theoretical binding affinity of E40/ERK2 and pE59/
ERK2.

DARPins/Kinase
Methods

Experimental (KD) Theoretical GBTOT (Kcal/mol)

E40/ERK2 6.6 × 10−9 -51.98 ±  6.64

pE59/ERK2 >8.7 × 10−6 -21.73  ±  4.54



101Software and Techniques for Bio-Molecular Modelling | www.austinpublishinggroup.com/ebooks
Copyright  Lee VS. This book chapter is open access distributed under the Creative Commons Attribution 4.0 
International License, which allows users to download, copy and build upon published articles even for commercial 
purposes, as long as the author and publisher are properly credited. 

•	 If error about “must be root”

 $sudo -i

 and reinstall again

$sudo ./Nvidia.....run

•	 If error about  “exit x server to install nvidia

 $sudo service lightdm stop

 $sudo ./Nvidia.....run

•	 Restart computer and install nvidia second time

 $sudo shutdown -r now

 $./NVIDIA-Linux-x86_64-310.32.run   

 $lsmod|grep nvidia (if install driver correctlly, you should see the nvidia information. If not, 
reinstall again)

•	 If the DASH home in ubuntu has gone,  do following

1. Switch to a terminal Ctrl+Alt+F1.

2. Login as your username.

3. Install linux headers:

 $sudo apt-get install linux-headers-generic

4. Uninstall nvidia driver - this depends on which version you installed :

 $sudo apt-get remove nvidia-current

 or

 $sudo apt-get remove nvidia-current-updates 

 or

 $sudo apt-get remove nvidia-experimental-304

5. Reinstall nvidia driver

 $sudo apt-get install nvidia-current-updates

 When you do this, it must say something like:

 Building initial module for 3.5.0-17-generic Done.

 If it says
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Module build for the currently running kernel was skipped since the kernel source for this 
kernel does not seem to be installed.

then the problem will not be solved. Do not believe the message. It is not asking for linux-source 
to be install, it does only want the headers but you must install the specific -generic headers for 
your kernel. Run:

$sudo apt-get install linux-headers-`uname -r`

It will not work with just linux-headers-generic or linux-headers-3.5.0-17   (for example).

$sudo apt-get install linux-headers-3.5.0-17-generic  (find out your kernel version by typing 
in a terminal uname -r)

6. If it successfully installs, restart the computer :

$sudo shutdown -r now

Install CUDA 5.0 on Ubuntu12.04

•	 Download CUDA 5.0 from   https://developer.nvidia.com/cuda-downloads

 $chmod +x cuda5.0....._linux_64_ubuntu11.04.run

 $sudo ./ cuda5.0....._9_linux_64_ubuntu11.04.run

 #Enter until the end of the file 100% and type accept,    install in the default directly.

 Do not install the driver  .   The message:…..driver: no,directory: enter ; cuda toolkit: yes, 
directory enter ; cuda sample: yes, directory: enter

 # select driver install : no

 # cuda install : yes  and etc  : yes

•	 Fix .bashrc   file as following

 $cat $PATH

 $ export PATH=/usr/local/cuda/bin:$PATH

 #for 64-bit machines:

$export LD_LIBRARY_PATH=/usr/local/cuda/lib64:/usr/local/cuda/lib:$LD_LIBRARY_PATH

 #for 32-bit machines:

 $export LD_LIBRARY_PATH=/usr/local/cuda/lib:$LD_LIBRARY_PATH

 Now we want to test did the toolkit install properly:

 $nvcc –version
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 you should see this

 nvcc: NVIDIA (R) Cuda compiler driver

 Copyright (c) 2005-2012 NVIDIA Corporation

 Built on Fri_Sep_21_17:28:58_PDT_2012

Cuda compilation tools, release 5.0, V0.2.1221

#in the .bashrc file you should see

AMBERHOME=/home/username/amber12 

export AMBERHOME 

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH\:$AMBERHOME/lib 

CUDA_HOME=/usr/local/cuda-5.0 

export CUDA_HOME 

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$CUDA_HOME/lib:$CUDA_HOME/lib64 

$source .bashrc

Install AMBER12 and Ambertools12

•	 Extract amber12 and ambertools12

$pwd

/home/username

$tar jxvf AmberTools12.tar.bz2

$tar jxvf Amber12.tar.bz2

$cd amber12

$export AMBERHOME=`pwd`

$./patch_amber.py --update-tree

$./configure gnu

 # If there were any updates, see the section above about applying

 # updates to make sure you apply all of them.

$make install

•	 Install with single GPU 

$cd $AMBERHOME
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$make clean

$./configure -cuda gnu

$make install

You should see the dialogue similar to the one in the video appear. Next we want to install & 
build the SDK sample files:

$chmod +x cuda-samples_5.0.7_linux.run

$./cuda-samples_5.0.7_linux.run

$cd ~/NVIDIA_CUDA_Samples/

$make

$./C/2_Graphics/volumeRender/volumeRender

More Information: http://ambermd.org/gpus/

•	 Checking gpu run:

$ nvidia-smi

$ nvidia-smi -pm 1 

$ nvidia-smi -c 3

•	 Running GPU on specific card:

$ export CUDA_VISIBLE_DEVICES=”0”

$ export CUDA_VISIBLE_DEVICES=”1”
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ABSTRACT
Graphical representation of molecular biology knowledge in the form of interactive diagrams 

became widely used in molecular and computational biology. It enables the scientific community 
to exchange and discuss information on cellular processes described in numerous scientific 
publications and to interpret high-throughput data. Constructing a signaling network map 
is a laborious process, therefore application of consistent procedures for representation of 
molecular processes and accurately organized annotation is essential for generation of a high-
quality signaling network map that can be used by various computational tools. We summarize 
here the major aims and challenges of assembling information in a form of comprehensive 
maps of molecular interactions and suggest an optimized workflow. We share our experience 
gained while creating a biological network resource Atlas of Cancer Signaling Network (ACSN) 
that was successfully applied in several studies. We explain the map construction process. Then 

Knowledge Formalization and 
High-Throughput Data Visualization 

Using Signaling Network Maps
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we address the problem of user interaction with large signaling maps and suggest to facilitate 
navigation by hierarchical organization of map structure and by application of semantic zooming 
principles. In addition, we describe a computational technology using Google Maps API to explore 
signaling networks in the manner similar to global geographical maps and provide the outline 
for preparing a biological network for this type of navigation. Nowadays the most demanded 
application of signaling maps is integration and functional interpretation of high-throughput data. 
We demonstrate several examples of cancer data visualization in the context of comprehensive 
signaling network maps.

Keywords: Knowledge formalization; Network map construction: Data model; Network map 
curation; Network map navigation; Data visualization

INTRODUCTION
Geographic maps, diagrams and flowcharts are examples of graphics that contain lots of 

information that is intuitive and relativity easy to grasp. Similarly, graphical representation of 
biological knowledge may allow to show complex processes of living cell in a visual and insightful 
way. Applying the principle of knowledge representation in the form of a diagram can help for 
systematic representation and formalization of molecular information distributed in thousands 
of papers. An additional advantage of representing the biological processes in a graphical form 
is catching collectively multiple cross-talks between components of different cell signaling 
processes. This allows understanding the global picture and connectivity between processes that 
is very difficult to keep in mind just from reading multiple scientific papers. Once the processes 
are depicted together as diagrams, the relationship between molecular circuits in cells can be 
appreciated, which makes signaling network maps also didactic tools [1].

Representation of biological processes as comprehensive signaling maps has three objectives: 
(i) generating a resource containing formalized summary of biochemical mechanisms as elucidated 
by many research groups, (ii) providing a platform for sharing information and discussing the 
mechanisms of biological processes, (iii) creating an analytical tool for high-throughput data 
integration and analysis. To achieve these goals, signaling map construction should become an 
accessible procedure that can be completed in a reasonable time. During last decade, the molecular 
biology community came up with several solutions of biological knowledge formalization that 
we shortly describe in this manuscript. We contribute to this global aim by describing the main 
principles of our established workflow for manual map construction. In addition, we demonstrate 
the ways of biological network map navigation facilitated by Google Maps technology and suggest 
our tools for performing data analysis and visualization on top of the signaling network maps. 

There are four main modes of cell processes representation. Each mode uses a different logic to 
depict molecular information: (i) interaction diagrams showing simple binary relations between 
molecular entities;(ii) activity-flow or regulatory networks representing the flow of information 
or influences of one entity on another; (iii) entity relationship diagrams depicting relations in 



109Software and Techniques for Bio-Molecular Modelling | www.austinpublishinggroup.com/ebooks
Copyright  Kuperstein I. This book chapter is open access distributed under the Creative Commons Attribution 
4.0 International License, which allows users to download, copy and build upon published articles even for com-
mercial purposes, as long as the author and publisher are properly credited. 

which a given entity participates regardless of temporal aspects and (iv) process description 
diagrams (known in chemical kinetics as bi-partite reaction network graphs) where sequential 
order of biochemical interactions is explicitly represented [2]. Using the aforementioned modes 
of cell processes representation, several pathway databases have emerged [3]. They serve as 
biological knowledge information resource and as computational analytical tools for systems-
based interpretation of data. Significant number of pathway databases have been developed in 
the private domain, but the majority of them are free open sources (Table 1).

Table 1: Pathways databases and network resources; navigation tools and high-throughput data 
visualization support.

Signaling pathways and networks resources

Name Website Description Reference

STRING http://string-db.org Integrated protein-protein interaction database [39]

BioGRID http://thebiogrid.org Integrated protein-protein and genetic interaction 
database [40]

MINT http://mint.bio.uniroma2.it/mint/
Welcome.do Carefully curated PPI resource [41]

PathwayCommons http://www.pathwaycommons.org Biological pathways resource collected from public 
pathway databases [42]

TRANSPATH http://www.biobase-international.
com

Database of mammalian signal transduction and 
metabolic pathways [43]

ConsensusPathDB http://consensuspathdb.org Integrated resource of interaction networks and 
pathways [8]

Panther http://pantherdb.org Collection of biological pathways and data 
visualization and analysis tools [6]

Spike http://www.cs.tau.ac.il/~spike Collection of curated, peer reviewed pathways and 
data visualization tools [7]

WikiPathways http://www.wikipathways.org Collection of community curated signalling pathways [25]

PID-NCI http://pid.nci.nih.gov Curated collection of information about biomolecular 
interactions and signalling pathways

KEGG Pathway http://www.genome.jp/kegg/pathway Collection of manually drawn pathway maps 
visualization tool [4]

Reactome http://www.reactome.org Collection of curated, peer reviewed pathways and 
data visualization/analysis tools [5]

ACSN http://acsn.curie.fr Collection of curated, peer reviewed, interconnected 
cancer-related signaling networks and data 

visualization/analysis tools
[9]

Tools for network construction, visualization, navigation, and commenting

Name Website Description Reference

CellDesigner http://www.celldesigner.org Structured diagram editor for drawing gene-regulatory 
and biochemical networks [14]

SBGN-ED http://vanted.ipk-gatersleben.de/
addons/sbgn-ed

VANTED add-on for create and edit three types of 
SBGN maps [12]

CellPublisher http://cellpublisher.gobics.de KEGG database-associated tool for data visualization 
and analysis in the context of pathway maps [15]

Cytoscape / BiNoM http://www.cytoscape.org
http://binom.curie.fr

Software platform for manipulation of biological 
networks represented in standard systems biology 

formats
[44][24]

Payao http://payao.oist.jp:8080/
payaologue/index.html

Network curation tool for simultaneous map 
commenting using tag system [30]

Pathway Projector http://www.g-language.org/
PathwayProjector

Web-based zoomable pathway browser using Google 
Maps API [16]

NaviCell http://navicell.curie.fr Web-based tool for heterogeneous data visualization 
and analysis in the context of signalling networks [17][18]

http://payao.oist.jp:8080/payaologue/index.html
http://payao.oist.jp:8080/payaologue/index.html
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The current status of representing cellular mechanisms in such databases as KEGG [4], 
Reactome [5], Panther [6], Spike [7], Consensus Path DB [8] and others, mainly remains at the 
level of drawing individual signal transduction pathways, that precludes clear representation 
of cross-regulations between pathways. The alternative solution is creating the seamless map 
of biological mechanisms covering multiple cell processes at one canvas as it is done in Atlas 
of Cancer Signaling Network (ACSN) [9] and KEGG metabolic pathway [10]. This “geography-
inspired” approach to biological knowledge representation is a very attractive goal. However, 
achieving this goal is connected with a number of challenges related to creation, maintenance and 
navigation of the large signaling network maps. This chapter is partially devoted to discussing 
these challenges and suggesting solutions from our practical long-term experience.

Variety of uncompatible ways are used to represent biological maps in different pathway 
databases. This creates difficulties in combining complementary maps from multiple resources. 
With the aim to join the efforts in the field and create a collection of mergeable and exchangeable 
signaling maps, common rules of map drawing and standard graphical syntax should be developed 
and consistently applied. The current solution suggested in the field is Systems Biology Graphical 
Notation (SBGN) syntax, which is compatible with many pathway drawing and analytical tools, 
allowing to represent not only biochemical processes, but also cell compartments and phenotypes 
[11]. In such databases as Reactome, Panther pathways diagrams are represented in the SBGN 
graphical format. In addition, to enable cross-compatibility, several common pathway exchange 
formats were suggested such as BioPAX, SBML, PSI-MI etc [2].

For creating signaling maps, there exist several free and commercial tools for signaling map 
diagram construction. These tools use different syntax and also vary in their accessibility for the 
end users. Examples are SBGN-ED [12], visANT [13], CellDesigner [14] and others (Table 1).

yEd graph editor http://www.yworks.com/en/products/
yfiles/yed/

Application for generate high-quality diagrams 
construction

http://link.
springer.

com/chapter/
10.1007/

978-3-642-
18638-7_8

VisANT http://visant.bu.edu/ Tool for visual analyses of metabolic networks in cells 
and ecosystems [13]

Pathway Map Creator
http://lifesciences.thomsonreuters.
com/m/pdf/PathwayMapCreator-

cfs-en.pdf

Tool for editing and analysis of canonical pathways 
maps 

Tools for visualisation of high-throughput data in the context of signalling networks

Name Website Description Reference

ReactomeFiViz http://wiki.reactome.org/index.php/
Reactome_FI_Cytoscape_Plugin

Cytoscape plugin for data integration into signalling 
networks [45]

iPAth http://pathways.embl.de Web-based tool for data visualization in the context of 
pathway maps [46]

Medusa http://coot.embl.de/medusa Tool for data visualization in the context of signalling 
network and network clustering [47]

NaviCell http://navicell.curie.fr Web-based tool for heterogeneous data visualization 
and analysis in the context of signalling networks [17][18]

KEGG Mapper http://www.kegg.jp/kegg/mapper KEGG database-associated tool for data visualization 
and analysis in the context of pathway maps [4]

http://link.springer.com/chapter/10.1007/978-3-642-18638-7_8
http://link.springer.com/chapter/10.1007/978-3-642-18638-7_8
http://link.springer.com/chapter/10.1007/978-3-642-18638-7_8
http://link.springer.com/chapter/10.1007/978-3-642-18638-7_8
http://link.springer.com/chapter/10.1007/978-3-642-18638-7_8
http://link.springer.com/chapter/10.1007/978-3-642-18638-7_8
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Visualization and exploring biological network diagrams became an important issue, because 
size and complexity of molecular networks approach the modern geographic maps. Therefore, 
several tools such as CellPublisher [15], Pathway Projector [16] and NaviCell [17,18] have adopted 
the logic of navigation from Google Maps technology. They allow uploading networks diagrams, 
exploring big networks in a user-friendly manner using such Google Maps features as scrolling, 
zooming, markers and callouts (Table 1).

In this chapter, we provide a workflow where we briefly describe our methodology to meet 
challenges of map construction, navigation and data integration. We suggest a methodology that is 
neither unique nor universal, but provides practical solutions for comprehensive maps generation 
and manipulation. This methodology served for creating the maps for ACSN resource [9]. The 
approach was also successfully applied in several studies [19,20]. Each step of the workflow starts 
from the problem statement and description of the principles followed by a solution suggestion 
demonstrated on a typical example.

We discuss the following topics:

• Defining the aim and the coverage of knowledge on signaling map

• Literature selection and signaling map drawing in CellDesigner tool using SBGN-like syntax 
[14]

• Preparation of CellDesigner maps in NaviCell format and generation of a NaviCell web-based 
pages

• Navigation modes using Google Maps-based NaviCell tool [17]

• High-throughput data visualization on top of the signaling maps using NaviCell Web Service 
module [18]

The entry point to the detailed description of the procedures is provided in the end of the 
chapter, and available at https://navicell.curie.fr/pages/guide.html.

The suggested workflow for map generation and exploration is schematically depicted in 
Figure 1.
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Figure 1: Map construction workflow scheme.
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GENERAL  PRINCIPLES  AND  WORKFLOW  FOR MAP 
CONSTRUCTION
Work Organization

Signaling map construction requires an overview of broad scientific literature and a very 
minute work for correct representation of molecular processes in great details. Given large 
work content, map construction can be approached as a collective effort. To achieve efficient and 
coordinated team work, several important decisions should be made prior to the map construction 
by answering to the following questions: (i) What is the purpose of map construction? (ii) What 
map type is suitable for proper representation of the knowledge? (iii) What is the appropriate 
tool to build the map? (iv) What processes to include into the map? (iv) How the map will look 
like? Once the answers to those questions are found and agreement on the approach is achieved, 
the way of signaling diagram construction should be strictly followed to ensure generation of 
a homogeneous and accurate map. An additional important step before constructing a map is 
consulting similar efforts in the field and clear understanding of added value of a new map. 

Map Purpose and Type
As an example, we use the DNA repair map from ACSN resource available at https://acsn. 

curie.fr/navicell/maps/dnarepair/master/index.html. With purpose to understand how different 
types of DNA damage are repaired in the cell and how the coordination between various DNA 
repair mechanisms and the cell cycle takes place, we have decided to construct a comprehensive 
map of DNA repair and cell cycle signaling. We aim to use this map for detecting the modes of DNA 
repair machinery rewired in different pathological situations such as cancer or under genotoxic 
stress. The mechanisms of DNA repair are well studied and information on involved molecules 
and regulation circuits is available. Therefore, to preserve and depict accurately the processes in 
whole complexity, we have chosen the process description diagram type were the biochemical 
reactions can be explicitly depicted. 

Map construction tool, graphical standard and data model
Signaling processes are represented as biochemical reactions in CellDesigner diagram editor.  

CellDesigner uses standard Systems Biology Graphical Notation (SBGN) syntax [11] and is based 
on Systems Biology Markup Language (SBML) for further computational modeling of the map 
[14]. The data model, that is applied for our example is schematically depicted in Figure 2.  This 
data model includes such molecular entities as proteins, genes, RNAs, antisense RNAs, simple 
molecules, ions, drugs, phenotypes, complexes. Biochemical reactions connect reactants to 
products and various types of reaction regulators are also depicted. Edges on the map represent 
biochemical reactions or reaction regulations including post-translational modifications, 
translation, transcription, complex formation or dissociation, transport, degradation, etc. 
Reaction regulations are catalysis, inhibition, modulation, trigger, and physical stimulation. It 
is also possible to depict cell compartments such as cytoplasm, nucleus, mitochondria, etc.  See 
http://celldesigner.org/documents.html for CellDesigner tool guide and http://www.sbgn.org/
Main_Page for SBGN syntax explanation.
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Figure 2: Data model for process description diagram drawing.

MAP BOUNDARIES, LAYOUT AND STRUCTURE
Map Boundaries and Content

Given limitations of graphical tools and difficulties in manipulating large maps, it is 
recommended to define the boundaries of signaling maps. The most natural way to set map 
boundaries is to dedicate each map to one biological function (e. g. cell death, DNA replication,  
immune response) that is a difficult task per se due to ‘fuzziness’ of borders between processes 
and overlaps between players and pathways across cell signaling. Therefore, those function-
driven maps should be assumed as components of the global atlas where the merging via common 
players or overlapping parts should be possible due to common standards applied and common 
identifiers for entities universally used through all maps. The decision about map boundaries 
highly depends on the opinion of the map creator, thus community-based curation of maps is 
crucial for making more objective decisions.
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In our example, the boundaries of DNA repair map were defined in coordination with several 
specialists in the corresponding fields and based on the commonly accepted vision of pathways 
as they are presented in seminal reviews and in well-known databases. Accordingly to the current 
definition of DNA repair, it is possible to distinguish 10 different modes of repair depending on 
the type of damage and mechanisms of repair. The DNA damage types are clearly depicted on the 
map as input initiating DNA repair mechanisms. The ten DNA repair mechanisms with multiple 
crosstalk [21]; four cell cycle phases and check points including regulatory circuits between cell 
cycle to DNA repair mechanisms via checkpoints are included into the map [22] (Figure 3).

Figure 3: DNA repair map in NaviCell format

(A) Global (top) layout, (B) Individual module layout (BER module of the DNA repair map), (C) 
Pop-up window with annotation of p53 protein.

Map Layout and Hierarchical Modular Structure

The aim of signaling map construction is not only to summarize molecular mechanisms, 
but also to allocate processes in a meaningful and biologically relevant way. Careful design of 
signaling map layout helps for intuitive understanding of ‘what is where’ and ‘what is close and 
what is distant’. In addition, a bird’s eye view on the map can give a general impression about map 
complexity based on interaction density between players in the network. 

The structure of signaling map and its layout are messages by themselves. There are at least 
three ways of map layout choice: (i) Representing spatial localization of processes in the context 
of the global cell architecture. Most of the signal transduction maps mimic accepted view of 
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cell organization, they include cellular compartments and signaling pathways are placed in the 
corresponding compartments on the map (see examples at https://acsn.curie.fr). (ii) Depicting 
process propagation in time, for instance, demonstrating propagation of the signaling through 
four phases of cell cycle (Figure 3A, cell cycle). (iii) Placing processes together according to 
involvement in a particular biological function. The most representative example is DNA repair 
pathways, where each pathway is depicting one biological function, these pathways are allocated 
next to each other, creating together a DNA repair machinery layer (Figure 3A, DNA repair). The 
combination of layout types at the same map is also possible as in the case of DNA repair map 
combining the three aforementioned layout types (Figure 3A and https://acsn.curie.fr/navicell/
maps/dnarepair/master/index.html).

Type of chosen layout also can guide in separating big maps into sub-maps (modules) and help 
generating hierarchical modular structure of map. Each such a module can exist as a part of the 
global map and as an independent map. Exploring these module maps together with the global map 
can be supported by Google Maps-based map navigation that facilitates understanding of depicted 
processes (discussed below). Map dimensions and layout should be defined prior to initiating the 
map drawing. This step is especially crucial in the case of collective map reconstruction approach 
where final global map is assembled from a number of sub-maps (or module maps).

In our example, the global layout of DNA repair map has been designed to emphasize the cross-
regulation between three major blocks of the map: the knowledge of DNA repair machinery and 
its connection to the cell cycle and to the checkpoints is represented as layers. The upper layer 
depicts cell cycle, the middle layer represents cell cycle checkpoints coordinating the crosstalk 
between the cell cycle and the DNA repair machinery which is represented in the lower layer. 
The DNA map has modular structure composed of 18 functional modules corresponding to ten 
DNA repair mechanisms, four phases of cell cycle and four checkpoints, all interconnected, with 
multiple regulatory circuits (Figure 3A).

Typically, in the case of large maps, close up view on individual functional modules within the 
context of global map is difficult due to the distant location of some players and high density of 
edges crossing the map in multiple directions. To overcome these constraints, individual module 
layout can be designed for each modular map that can differ from the original one on the global 
map and aims to better represent the detailed biochemical reaction flow. An example of a module 
map with optimized layout for Base Excision Repair (BER) pathway is shown in Figure 3B. For 
modular map generation instructions see in the Map preparation in NaviCell format procedure 
(https://navicell.curie.fr/doc/NaviCellMapsPreparationProcedure.pdf).

Similarly, it is possible to generate automatic layouts for module maps or even for maps of 
individual entity life-cycles with their related edges and reactions. This can be performed in 
Cytoscape using BiNoM plugin with help of modularization and automatic layout functions [23]. 
To facilitate integration of separate signaling diagrams, there are at least two methods for map 
merging: (i) Merge Model plugin in CellDesigner [14] and (ii) BiNoM plugin of Cytoscape which 
allows to reorganize, dissect and merge disconnected CellDesigner pathway diagrams [23]. See 
https://binom.curie.fr/docs/BiNoM_Manual_v2.pdf for map merging procedure in BiNoM.

https://acsn.curie.fr).(ii)
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DATA EXTRACTION AND REPRESENTATION
Manual Data Mining

Clear understanding of biological processes and experimental methodologies is essential for 
constructing a correct and usable signaling map. Different types of molecular interactions can 
be demonstrated by various experimental methods. Retrieving the correspondence between a 
method to evidence is needed for correct interpretation of the results described in the papers, 
followed by suitable graphical representation of the statements. The most common and reliable 
experimental methods confirming different types of molecular interactions in the cell are 
summarized in Table 2.

Table 2: Method for studying molecular and genetic interactions.

Interaction Method Reference

Ligand-receptor 
interactions

Resonance energy transfer [FRET and BRET] [48][49]

Flow CytometricAnalysis  [50]

Direct protein-protein 
interactions

Co-immunoprecipitation [CoIP], [51][52]

NMR, X-ray crystallography, [53]

GST-pull down assay [54]

Tandem affinity purification [51][49]
Far Western blotting [55]

Phage display [52]
Mass-spectrometry [56]

 Two hybrid assays [yeast and mammalia] [51]

Functional mutational analysis [57]

Direct protein-DNA 
interaction [transcription 

regulation and co-
regulation]

Chromatin immunoprecipitation [ChIP] [58][59]

 DNA footprinting, [58]

 Electrophoretic mobility shift end supershift 
assays [EMSA] [58]

 Computational prediction of transcription factors 
binding sites [60]

MicroRNA binding

Direct miRNA binding assay, [61]
 3 'UTR reporter assay, [61]

Computational miRNA target prediction [61]

Regulation of expression 
[mRNA and protein level]

Reverse transcription polymerase chain reaction 
[RT-PCR] [62]

Reporter assays [63]
RNase protection assay [64]

Nothern blot [62]
Western blot [65]

Fluorescence-activated cell sorting [FACS] [66]

Genetic interactions

Genetic knock-out, knock-down, knock in  or
overexpression of effector molecules [67][68]

Synthetic interaction detection assays [52][69]
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One on the major aims of signaling network maps is to represent biological processes with 
great precision including post-translational modifications, transport, complex association, 
degradation etc. Phenotype nodes on the signaling maps normally serve for indication of 
signaling readouts or cell statuses or biological processes in general. This type of nodes can also 
serve for schematic representation of observation-type statements when the exact molecular 
mechanism is still unknown. Some details on cell signaling might be skipped or in contrary, 
represented rigorously, depending on the purpose of the map drawing and opinion of the map 
creator. Persisting homogeneity in the presentation of information on the map will ensure correct 
stepwise appearance of details on different map views (discussed below).

For efficient map construction, we suggest applying systematic literature revision. 
Hierarchical organization of the map discussed in the previous paragraphs, reflects the principle 
of literature curation for map generation in our example. To define the map boundaries and 
content, seminal review papers in the field are used which provide a list of original references. It 
is also recommended to consult the major pathway databases (Table 1). The canonical pathways 
retrieved from major reviews and databases reflect the consensus view of the field and serve as a 
basis for drawing the core processes on the map. Thus, the details can be added to the map to depict 
information extracted from the recent literature with the requirement that the interactions and 
processes included into the map are supported by at least two independent investigations. Figure 
4 represents an example from the DNA repair map on how the scientific text is translated into the 
process description diagram. For consistency of text to diagram conversion, we have developed 
several major rules for standard statements interpretation, summarized in the Map creator guide 
(https://navicell.curie.fr/doc/NaviCellMapperAdminGuide.pdf) and in the Map preparation in 
NaviCell format procedure (https://navicell.curie.fr/doc/NaviCellMapsPreparationProcedure.
pdf).

https://navicell.curie.fr/doc/NaviCellMapsPreparationProcedure.pdf
https://navicell.curie.fr/doc/NaviCellMapsPreparationProcedure.pdf
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Figure 4: From text to model

Representation of biochemical reactions from the following text from a molecular biology 
manuscript. Numbers correspond to the reactions in the diagram:« BRCA1 transcription (1) and 
translation (2)  is positively regulated by E2F1/BRIT1* complex (3) and inhibited by p53 (4). BRCA1 
protein is transported into nucleus (5), where CHEK2 kinase activates it by spesific  phosphorylation 
(6) and (7). Additionally, BRCA1 forms a complex with BARD1 (8) and BRCA1 association with 
BARD1 is essential for the E3 ligase activity of BRCA1». References correspondence: reactions 1,2,4 
(33);  reaction 3 (34); reaction 5 (35); reactions 6,7 (36); reaction 8 (37). Formalized textual 
description of the diagram, in the BiNoM Reaction Format (BRF) is described in the text.

Processing Formal Statements on Biochemical Reactions

An additional useful method for knowledge to diagram conversion is using a formalized text-
based intermediate language. In this method the sentences formulated in the “human” language 
are first converted into a set of formal statements describing reactions. These statements can be 
automatically converted into the graphical diagrams, using BiNoM Cytoscape plugin. For example, 
the set of statements corresponding to the diagram in Figure 4 is:

BRCA1@cytoplasm -/> BRCA1@nucleus

BRCA1@nucleus+BARD1@nucleus -:> BARD1:BRCA1@nucleus
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BRCA1-CHEK2|pho@nucleus -> BRCA1|pho|active@nucleus

rBRCA1@cytoplasm -.> BRCA1@cytoplasm

gBRCA1@nucleus-|p53*@nucleus -BRIT1*:E2F1@nucleus -..>rBRCA1@cytoplasm

These statements can be prepared in any simple text-based editor and imported to Cytoscape 
environment through BiNoM and then converted directly into the CellDesigner diagram presented 
in Figure 4. The syntax of this BiNoM Reaction Format (BRF) language have been depicted in 
[19,24] and in the BiNoM manual (https://binom.curie.fr/docs/BiNoM_Manual_v2.pdf).

Map Entities Annotation

Common entity annotation format and consistent integration of stable identifiers for map 
entities are essential for compatibility of maps with other tools. It also facilitates integration of data 
into maps and other manipulations as cross-curation of maps by specialists and incorporation of 
their corrections into the map. We have developed the NaviCell annotation format for each entity 
that is applied during map construction in CellDesigner (Figure 5). The annotation panel includes 
sections ‘Identifiers’, ‘Maps_Modules’, ‘References’ and ‘Confidence’. ‘Identifiers’ section provides 
standard identifiers and links to the corresponding entity descriptions in HGNC, UniProt, Entrez, 
SBO, Gene Cards and cross-references in REACTOME [5], KEGG [4], Wiki Pathways [25] and 
other databases. Metabolites and small compounds are annotated by corresponding identifiers 
and linked to ChEBI [26], PubChem Compound [27] and KEGG Compound [28] databases. 
‘Maps_Modules’ section includes links to modules of the DNA map were the entity participates. 
In addition, since our example,  DNA repair map, is part of Atlas of Cancer Signaling Network 
(ACSN) resource [1], the links to maps and modules of ACSN where the entity participates, 
are also provided. ‘References’ section includes notes added by the map manager and links to 
relevant publications (Figure 5A). Each entity annotation is represented as a post in the web-
blog generated when the NaviCell map is generated from CellDesigner file (described below). The 
web-blog is providing a possibility of communication between map users and map managers. 
Comments can be submitted at the blog post page in text form together with files of any type 
(Figure 5A). The extended description of annotation formats for each type of entities on the map 
is provided in https://navicell.curie.fr/doc/NaviCellMapsPreparationProcedure.pdf.

https://navicell.curie.fr/doc/NaviCellMapsPreparationProcedure.pdf
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Figure 5: Entity and complex annotation.

(A) NaviCell annotation of p53 protein, (B) NaviCell annotation of p53/PARP complex.

Confidence Scores

We introduced two simple confidence scores for proteins complexes and reactions that 
are provided in “Confidence” in a form “five-star” diagram and calculated automatically while 
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conversion of CellDesigner map to NaviCell format. Both scores represent integer numbers varying 
from 0 (undefined confidence) to 5 (high confidence). The reference score, marked by ‘REF’ 
indicates both the number and the  ‘weight’ associated to publications found in the annotation of 
a given reaction, with weight equal 1 point for an original publication and 3 points for a review 
article. The functional proximity score, marked by ‘FUNC’ is computed based on the external 
network of protein-protein interactions (PPI), Human Protein Reference Database (HPRD) [29]. 
The score reflects an average distance in the PPI graph between all proteins participating in the 
reaction as reactants, products or regulators. The functional proximity is computed using BiNoM 
Cytoscape plugin [23] (Figure 5B).

GENERATION OF NAVICELL MAP USING NAVICELL FACTORY AND 
EXCHANGE FORMATS

CellDesigner maps annotated in the NaviCell format or un-annotated, can be converted into 
a NaviCell web-based front-end, which represents a set of html pages with embedded JavaScript 
code that can be launched in a web browser locally or put on a web-server for further online 
use. Use of identifiers in the annotation of proteins (“HUGO:XXX” tag) will allow using NaviCell 
data visualization functionality. The NaviCell factory is embedded in the BiNoM Cytoscape plugin 
and also available as a stand-alone command line package (https://github.com/sysbio-curie/
NaviCell). The detailed guide of using the NaviCell factory is provided at https://navicell.curie.fr/
doc/NaviCellMapperAdminGuide.pdf.

The maps generated in CellDesigner and exposed in NaviCell format can also be provided 
in common exchange formats to ensure compatibility of maps with other computational tools. 
Currently, maps can be generated in BioPAX and PNG formats. In addition, the module composition 
of maps can be provided in a form of GMT files. The description of map preparation in various 
formats using the BiNoM Cytoscape plugin is available in the BiNoM manual https://binom.curie.
fr/docs/BiNoM_Manual_v2.pdf.

MAP NAVIGATION
Comprehensive signaling maps, as DNA repair map, contain large number of nodes and edges 

that makes navigation through the map difficult. To solve this problem, maps can be represented as 
clickable web pages with a clear graphic user interface. We have developed user-friendly NaviCell 
web-based environment empowered by Google Maps engine for visualization and navigation 
of the comprehensive maps [17]. These features are demonstrated in our example: scrolling, 
zooming, markers, callout windows and zoom bar are adopted from the Google Maps interface 
(Figure 3C). The map in NaviCell is interactive and all components of the map are ‘clickable’. For 
finding the entity of interest, querying for single or multiple molecules using the search window 
is possible. Alternatively, the entity can be found in the selection panel or directly on the map.

We describe several solutions to optimize navigation through the maps. First, ‘horizontal’ 
navigation that is facilitated by the hierarchical modular structure of DNA repair map, as it is 

https://navicell.curie.fr/doc/NaviCellMapperAdminGuide.pdf
https://navicell.curie.fr/doc/NaviCellMapperAdminGuide.pdf
https://navicell.curie.fr/doc/NaviCellMapperAdminGuide.pdf
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described in previous paragraphs. This modular structure allows shuttling between the global 
map to the functional module maps and observe different processes on separate modular maps, 
containing only limited number of entities, as it is demonstrated in the DNA repair map example 
in Figure 3B.

Second, ‘vertical’ navigation, is facilitated by the semantic zooming feature of maps, especially 
prepared in NaviCell format. Semantic zooming simplifies navigation through the large maps 
of molecular interactions, showing readable amount of details at each zoom level. Gradual 
appearance of details allows exploration of the map content from the top-level toward detailed 
view. To prepare maps for this type of navigation, pruning of maps is performed in order to 
eliminate non-essential information for each zoom level. We recommend to prepare four zoom 
levels, although number of zooms is unlimited in NaviCell. 

In our example of DNA repair map, the first, top-level view, shows modules of the map depicted 
as colored background shapes (Figure 3A). At the next level, a more detailed level of zooming shows 
canonical cell signaling pathways. These pathways are defined by intersecting the content of the 
map with the corresponding pathways in other databases (Figure 6A). Next zoom hides names of 
complexes, entities and reaction (Figure 6B) and the last zoom is the most detailed view where 
all map elements are present (Figure 6C). The module background coloring appears as a context 
layer in the background of all levels of zooming. For detailed instructions on map zoom levels 
creation see in the Map creator guide (https://navicell.curie.fr/doc/NaviCellMapperAdminGuide.
pdf)and in the Map preparation in NaviCell format procedure (https://navicell.curie.fr/doc/
NaviCellMapsPreparationProcedure.pdf).

Figure 6: Semantic zooming and entity visualization on DNA repair map.
(A) Canonical pathways view, (B) Hide-details view, (C) Detailed view, (D) ”Highlighting” p53 

neighbours.

https://navicell.curie.fr/doc/NaviCellMapsPreparationProcedure.pdf
https://navicell.curie.fr/doc/NaviCellMapsPreparationProcedure.pdf
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A third way to facilitate exploration of a map is focusing on individual entities of the map by 
highlighting them. We have developed a NaviCell function of selecting and highlighting species of 
interest or neighbors of a molecular species of interest. This function allows step-wise enlarging 
of the neighborhood coverage to understand propagation of signaling on the map as shown for 
p53* molecule on the DNA repair map in Figure 6D.

MAP MAINTENANCE AND CURATION
Given the fact that biological knowledge about the majority of signaling pathways is not yet solid 

and continuously grows, one of the major problems of signaling maps is their fast obsolescence. To 
overcome the problem, permanent maintenance and updating of maps is essential. The community 
of users is the most reliable and trustable contributor to map maintenance, because specialists 
could support and update maps from the area of their own research that would ensure highest 
quality of maps update. To enable such a community-based effort, efficient curation tools should 
be created. To our knowledge, there is only one community curation tool for comprehensive 
maps, the Payoa plugin of CellDesigner (30). 

We recommend to carry out map curation in the context of NaviCell environment. The process 
of map curation and maintenance in NaviCell involves map managers that regularly examine the 
comments posted in the blog of the maps (Figure 5A), check the latest scientific literature and 
update the maps and the annotations accordingly. An automated procedure supports the map 
updating and archives older versions of posts including comments, thus providing traceability of 
all changes on the maps and all discussions in the blog [17].

VISUALIZATION OF OMICS DATA IN THE CONTEXT OF SIGNALING 
NETWORK MAPS

To make data visualization a straightforward and easy task, we have developed a built-in 
toolbox for visualization and analysis of high-throughput data in the context of - comprehensive 
signaling networks. The integrated NaviCell web-based toolbox allows importing and visualizing 
heterogeneous omics data on top of the maps and performing simple functional data analysis. 
It is also suitable for computing aggregated values for sample groups and protein families and 
mapping this data onto the maps. The tool contains standard heatmaps, barplots and glyphs as 
well as the novel map staining technique for displaying large-scale trends in the numerical values 
along the map. The combination of these flexible features provides an opportunity to adjust the 
modes of visualization to the data type and achieve the most meaningful picture [18]. An extended 
documentation, tutorial, live example and guide for data integration using NaviCell is provided at 
https://navicell.curie.fr/pages/nav_web_service.html.

To illustrate data visualization, the DNA map was used for analysis of omics data from 
breast cancer patients. To grasp the difference in the data distribution on top of the map and 
rewiring of signaling processes across different stages of breast cancers, the module activity 
was calculated based on transcriptomic data. The colors represent the average contribution of 
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all module components (Figure 7A). There is a clear difference in pattern between non-invasive 
stage 1 group of breast cancer patients to stages groups 4 invasive group, indicating a major shift 
in signaling involvement while the cancer cells transformation from non-invasive to invasive.  
In addition, closer look at the cell cycle checkpoints shows that spindle checkpoint is activated 
in the stage 4, whereas all other cell cycle checkpoints are down regulated. The observation is 
consistent with the ‘checkpoint addiction’ phenomena, when the tumors develop dependence on 
spindle checkpoint to allow chromosomes separation despite accumulated genomic instability 
and ensures cell proliferation regardless of the status of DNA damage [31].

Figure 7: Visualization of high-throughput data in the context of DNA repair map.

(A) Visualisation of difference in gene expression between two breast-cancer grades (Red – 
upregulation, green –downregulation). Difference are visualized at individual protein (left panel) 
and functional module (right panel) level, (B) Visualization of different functional types of cancer-
associated mutations.

In another example, in order to illustrate the coverage of gene mutation frequencies over 
the DNA repair map, the information about mutations in breast cancer was obtained from 
the Catalogue Of Somatic Mutations In Cancer (COSMIC) database [32] and mapped the most 
frequently mutated oncogenes and tumor suppressor genes (TSG) as glyphs using NaviCell data 
visualization toolbox (Figure 7B). TSG mutations are more frequently found in modules of DNA 
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repair map than oncogenes. This might indicate that TSGs in those processes normally contribute 
to the restriction of uncontrolled divisions and unrepaired DNA, but are inactivated by mutations 
in cancer.

An additional way to visualize the omics data on top of the maps that we also developed, but 
do not detail in this chapter, is using Cytoscape plugin BiNoM were the map staining displaying 
module activity values and coloring individual protein nodes with corresponding transcriptome 
data is possible [24].

CONCLUSIONS AND PERSPECTIVES 
Representation of relationships between cell molecules in the form of a biochemical process 

diagram depicts our current understanding of how cell activity is coordinated at the molecular 
level. The advantage of drawing biological processes in the form of interconnected network is 
not only to bring together components that participate in the described process, but also to allow 
capturing non-trivial interactions and regulatory circuits between those components. As the load 
of knowledge about biological mechanisms increasingly grows, organization, structuring and 
systematized representation of this data is essential for creating the global picture. Standardized 
representation of biological processes, intuitive maps navigation tools, community contribution 
to revising and updating the networks diagrams simplify construction of new networks and 
facilitate maintenance of existing signaling diagrams collections. These comprehensive signaling 
maps serve as a basis for modeling of signaling networks and efficient analysis and interpretation 
of high-throughput data [70].

In this chapter we have described the methodology developed in the group following our long-
standing experience with comprehensive maps generation and manipulation. Using this approach 
we have created and currently maintain a pathway resource of Atlas of Cancer Signaling Network 
(ACSN) [9] and a collection of maps created in CellDesigner available at https://navicell.curie.fr/
pages/maps.html. We have suggested a workflow for construction and annotation of signaling 
maps in CellDesigner, preparing the hierarchical modular structure of maps and also generation 
of different levels of the maps view, to allow semantic zooming-based exploration of maps in 
NaviCell. We have introduced NaviCell that is an environment for navigating large-scale maps of 
molecular interactions created in CellDesigner. NaviCell allows showing the content of the map 
in a convenient way, at several scales of complexity or abstraction; it provides an opportunity 
to comment on map content, facilitating curation and maintenance of the map. Finally we have 
shown how complex data can be visualized and interpreted in the context of the map.

Among many future challenges of the signaling network community are integration of 
similar efforts as improvement of network exchange formats and development of common 
network dynamic layouts. In addition, generation of comprehensive platforms for tools, data, 
and knowledge sharing in systems biology and biomedical research, similar to GARUDA initiative 
(http://www.garuda-alliance.org), will facilitate tools and resources compatibility improvement.
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DOCUMENTATION
CellDesigner introduction and tutorial 

http://celldesigner.org/documents.html

SBGN 

http://www.sbgn.org/Main_Page

BiNoM manual

https://binom.curie.fr/docs/BiNoM_Manual_v2.pdf

Map creator guide

https://navicell.curie.fr/doc/NaviCellMapperAdminGuide.pdf

Map preparation in NaviCell format procedure

https://navicell.curie.fr/doc/NaviCellMapsPreparationProcedure.pdf

NaviCell Web Service guide

https://navicell.curie.fr/doc/ws/NaviCellWebServiceGuide.pdf

NaviCell Web Service introduction, tutorial and case studies

https://navicell.curie.fr/pages/nav_web_service.html

Interactive demo on data visualization using NaviCell

https://navicell.curie.fr/navicell/maps/cellcycle/master/index.php?demo=on

ACSN introduction, tutorial and case studies

https://acsn.curie.fr/documentation.html

DNA repair map from ACSN resource  

https://acsn. curie.fr/navicell/maps/dnarepair/master/index.html
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INTRODUCTION
In an attempt to cut short the time, efforts and resources for the drug development, a whole 

new branch of Computer- Aided Drug Design (CADD) in pharmaceutical research has evolved. 
This branch (CADD) is based on the theoretical knowledge of over hundred years and is evolving 
at a considerable pace around the world to give a quick solution for an ideal drug candidate.

Computer Aided Drug Design

Computer aided drug design is a rational drug design approach that encompasses computational 
methods for studying virtual screening of compounds, physicochemical parameters evaluation 
and chemical interactions. Its roots can be traced back as early as 1953 when Monte Carlo and 
Metropolis algorithm were developed using advanced MANIAC computer systems [1]. In 90’s, 
high throughput screening and combinatorial chemistry methods gained importance in drug 
discovery. The growing importance can be assessed by the fact that journals dedicated on only 
CADD are available. Success stories of CADD in clinics include Captopril- antihypertensive drug, 
Dorzolamide- for the treatment of glaucoma, Saquinavir- HIV-1 protease inhibitor, Zanamivir- 
neuraminidase inhibitor as few examples [2].

Neuro-Ligands Optimization Using Molecular 
Modeling
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Initially, the work using CADD was based on structure-activity relationships which is dependent 
on ligand structure and hence popularly referred as Ligand based Method. Ligand based methods 
are based on the concept of “similarity” that is, molecules those bind to the same drug target 
will have similar structural and physicochemical parameters that can be correlated with the 
pharmacological effect. Further, new leads will be a result of extrapolation of this correlation. 
2D methods such as fingerprint similarity searching algorithms, 3D QSAR- Quantitative structure 
activity relationship and pharmacophores modeling are the main methods [3,4]. However, with 
the access to protein structures, structure-based drug design came into existence. Established 
in 1971 with only seven structures, the Protein Data Bank [5] of the Research Collaboratory of 
Structural Bioinformatics (RCSB) is the repository available to access the crystallographic as well 
as NMR structures of proteins. The structures are stored in PDB format with a universal accession 
number. Thus, in the structure-based drug design, the potential ligands are mapped onto the 3D 
structure of the target and are evaluated as suitable drug candidates.

Computer Aided Drug Design for Neuroligands

The brain is the house to many neurotransmitters, neuro-receptors, and enzymes. Indeed, it is 
a complex interplay of balance between them that creates the delicate balance of neuro-behaviour.

CADD methods have been extensively used for drug discovery. Few success examples are 
listed above. CADD methods are also being used specifically for the development of neuro-ligands 
and have been widely used for pharmacophores generation, high throughput screening and drug 
design for various diseases namely Alzheimer’s disease [6] and antidepressants [7]. 

Challenges for CADD for Neuroligands

What makes this topic of developing neuro-ligands through CADD interesting is, (a) fact that 
a large number of neurotransmitters receptors are GPCR membrane proteins and do not have 
the structural information in the form of PDB, (b) generation of unique receptor models using 
homology model with the help of the structural knowledge of a handful of receptors, and (c) 
interesting patterns of existence, as dimers and higher order oligomers, of neuro-receptors as 
majority of them are G-Protein coupled receptors.

G-protein Coupled Receptors

What are GPCR and why they belong to the intriguing family of proteins?

G-Protein coupled receptors are physiologically an important class of receptors. This 
superfamily or the largest family, to be more specific, of membrane integral proteins plays 
an important role in signal transduction pathways [8] and also modulates the responses of 
neurotransmitters in the brain. The family includes adrenergic, dopaminergic, serotonergic, and 
muscarinic receptors, opsins, and other related receptors. GPCR are also an attractive target for 
drug discovery with 40% drugs targeting GPCRs. Still, GPCR drug discovery is a challenge with an 
average value of only one new GPCR per year being drugged in the last decade [8]. Of the family, 
neuro-receptors present even a more challenging task.
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The neuroreceptors identified till date belong to either the GPCR family or ligand-gated ion 
channels. 

CADD for neuroreceptors has been applied for virtual screening predominantly using the 
ligand-based methods. For the structure-based methods, the impediment was the non-existence 
of GPCR receptors. Till late 2007, bovine rhodopsin was the “template of choice” and the only 
available template for the construction of structures based on homology model [9]. Only six 
receptors in various forms were crystallized till 2011 for the purpose of structure deposition as 
PDB [10]. The inability for crystallization has been attributed to the instability these receptors 
demonstrate after being devoid of their native cellular environment. Hence, various techniques 
for receptor stabilization have been used for the crystallization of nearly 21 new receptors [8]. 
Thus due to an upsurge in the number of PDB’s submitted for GPCR, structure-based approach also 
has gained momentum. A comprehensive list of selected PDB’s has been presented as Appendix 1 
based on the compilation [8] and experience of the authors for easy reference.

Structure generation using PDB

For an effective structure generation for receptors whose PDB’s are not available, homology 
modeling is performed. The basis of homology modeling is that one class of proteins is structurally 
similar. However, the challenges associated are many. Indeed, structure generation can be one of 
the trickiest and influencing component in structure based method. Few criteria for successful 
homology modelling are:

a) Selection of Template: A large number of templates are now available including the 
ligand-free and bound form. Hence, the template has to be selected that most mimics the end 
requirement. The choice of the template(s) for the homology model construction can have very 
many implications for example Cα positional variations of the order of 1- 3 Å (or more) in the 
active sites of enzymes which further may lead to substantial side chain displacements in the final 
model [11]. Outcomes of the blind GPCR modeling competitions using (D3R, A2AR, and CXCR4) 
reflect that similarity to a template and docking accuracy may not go hand-in-hand [12].

b) Sequence alignment [11]: The sequence alignments (single/ multiple) between the 
target and templates cannot be 100% because of gaps and insertions and there can be situations 
wherein a low sequence identity (< 40%) template has to be used. In cases where the sequence 
similarity might be of the order of 30% only, the reliability of the model needs to be validated 
through reference docking and validation.

c) Loop and side chain refinement [11]: Accurate prediction of residue side chain 
conformations which are physically relevant for ligand-receptor association and the positions 
of the residue side chain lining the active site of a homology constructed model can be difficult.

d) Optimization: Over optimization of a model might drive the model away from physical 
reality. 
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e) Experimental data compliance [11]: The model should be in line with the experimental 
data available viz, disulphide bridges, H-bonding between the residues, active site amino acids 
through site-directed mutagenesis, etc. A disparity can lead to erroneous results especially during 
virtual screening.

f) Coligands and role of water molecules: Mediating water molecules and counter ions 
inside the active site may mediate binding. However, the role is difficult to predict, except in the 
few conserved (tightly bound/structural) examples that are inferred from X-ray structures.

g) Multiple states existence: GPCR are known to exist in different functional states with 
preferential binding for agonists and antagonist in those states. An antagonist binding can be in 
a different plane of the membrane. This is exactly what has been reported for the difference in 
binding of antagonist ZM241385 with A2A versus β2-adrenergic receptors and rhodopsin. This 
binding is accompanied with differences in helical positions, extracellular loop organization and 
‘toggle switch’ arrangement [13]. Hence, choice of a template should be done with care. 

Every technique is beset with certain limitations, and this is true for CADD as well. While 
choosing a workflow purely based on ligand-based methods might appear to be simple and 
fast though these methods do not account for the protein structural framework. Choosing the 
structure based workflow may require homology models especially for neuro-receptors. The 
negative aspects of homology models have been listed above. Structure-based pharmacophores 
generation is thus, not as straightforward and requires that the ligand be docked to a large 
number of conformations as in case study example 1.3. After docking the scoring functions need 
to be properly utilized and optimized. 

Few case studies of recent past are being discussed below to highlight the CADD for design and 
development of neuro-ligands.

CASE STUDY 1: DESIGN OF HIGH-AFFINITY LIGANDS THROUGH 
VIRTUAL SCREENING

The examples being discussed reflect the application of a combination of structure and ligand 
based methods. These methods can be used in any form of the arrangement (Figure 1):
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Figure 1: Arrangement of workflows for virtual screening.

Example 1.1: Sequential Manner of Structure Based – Ligand-Based Methods 
for Virtual Screening

Endocannabinoid receptors CB1 is an attractive drug target. Its agonist plays an important role 
in the treatment of various disorders. In the study published by Mella-Raipán et al. [14], both SAR 
and docking studies (Figure 2) were utilized to study the mode of interaction of benzimidazoles 
based ligands- 1 and 2-naphthyl, and 1 and 2-naphthoyl -2-pyridyl-benzimidazole derivatives. 
Initially, a library of most putative ligands based on variations in substituent was generated. The 
compounds conformers were generated and docked onto the receptor homology model. Docking 
simulation studies of the ligand with the receptor model helped in the prediction of the major 
interaction regions. After generating the optimized pose, 3D QSAR using CoMFA analysis was 
used to arrive at the high- affinity ligands where optimal substitution in the different regions of 
the derivatives were deduced using the energy contour maps. 
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Figure 2: Schematic representation of Example 1.1 [14]

For the study following parameters were used for docking and QSAR studies (Table 1.1 and 
1.2):

Table 1.1 : Workflow followed for Docking Studies.

Target: CB1R

Template: A2aR PDB ID: 3EML

Homology Model [15]:

Sequence alignement:
1. Clustal alignment

2. Manual modification
-S-S- bridge between C257 and C264

Generated Models:
Number: 100

internal scoring function
energy minimization protocol

Model validation
NIH SAVES server

alpha-carbon root-mean-square deviation of 0.64 Å
Ramachandran plot analysis- 97% of the residues in allowed regions

Docking

FRED v2.2.5
Scoring : PLP, Chemscore,Chemgauss3 scoring function

Minimization of docked pose:
CHARMM22 force-field in Discovery Studio v2.1

Table 1.2: Workflow followed for QSAR Studies.

Analysis CoMFA(Comparative Molecular Field Analysis) using SYBYL-X 1.2
PLS analysis between the CoMFA descriptors (independent variables) and the affinity values (dependent 

variables)
cross-validation 

analysis
LOO method (and SAMPLS), which deduces the square of the cross-validation coefficient (q2) and the 

optimal number of components N

Example 1.2: Hybrid Structure Based – Ligand– Based Methods

In the study of Xu et al. [16], agonistic ligands were predicted using Molecular Docking and 
Molecular Dynamics simulation. In short, the homology models of 5HT1AR was built using β2AR 
(PDB: 3SN6) and the fifty models generated were shortlisted depending on the lowest DOPE 
(Discrete Optimized Protein Energy) score. The PDB: SN6 represents the active state ternary 
complex composed of agonist- occupied monomeric β(2) AR and nucleotide-free Gs heterotrimer 
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with a resolution of 3.2Ǻ. Dynamic pharmacophores modelling was carried to screen the potential 
agonistic ligands. Initially the compounds (taken from the database) were screened based on 
Lipinski rule of five for drug likeliness, docked and the most reasonable complex was compared. 
Later, Molecular Dynamics simulation revealed not only the interactions of the agonist but also 
the possible mechanism of activation. Finally, through the screening ten new 5-HT1AR agonists 
were successfully identified, of which three ligands revealed high potency of Ki values less than 
100 nM.

Figure 3: Schematic representation of Example 1.2.

Thus, the study reflects a combination of hybrid ligand based – structure- based combination 
(Figure 3). Initially, based on structure based method dynamic pharmacophores have been 
generated. Database compounds were screened parallel based on ligand- based and dynamic 
pharmacophores. The main highlights of the study are (Table 2.2):

Table 2.2: Workflow for Dynamic VS.
Target: 5HT1A

Template: 3SN6

Homology Model:

(a) ClustalX 2.0 program
(b) Discovery Studio 3.5

(c) Discrete Optimized Protein Energy

Minimization: Prime module of Schrodinger and Loop refinement

Model validation:

PROCHECK
Ramachandran plots

≈98% of the residues are in overall allowed regions for both templates
VADAR: 3D4S based model was more compact than the 2RH1

Binding site Prediction and validation binding pocket : defined to include all residues within 10.0 Å of Cγ carbon atom of 
conserved D3.32

Docking GoldSuite 5.0 and GoldScore
Molecular Dynamics Simulation GROMACS 4.5.1 package

Cluster Analysis. GROMACS
PharmacophoreModel

Generation GRID 22 program

Dynamic Pharmacophore-Based Virtual 
Screening

Dynamic pharmacophore model as a 3D query followed by screening of databases 
to get the Hits
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Example 1.3: Multistep Structure Based – Ligand– Based Methods

Another study [4,17] for high-throughput screening was reported. The objective was to screen 
ligands against SERT (serotonin transporter). The difference in approach here is (a) a multistep 
protocol based on both ligand based and structure-based screening for virtual screening was 
demonstrated (Figure 4) (b) additional filter viz Veber filters, ADMET parameters for initial 
screening were tested to screen compounds of the order of ∼3.24 million (b) 2D fingerprint- 
based screening to generate two-dimensional (2D) pharmacophore-based and structural 
(hashed chemical) fingerprints was used (c) Finally the compounds were docked flexibly onto 
the homology model of SERT and 74 active SERT binders belonging to 16 structural classes were 
identified and validated experimentally.

Figure 4: Schematic representation for example 1.3.

Table 1.3(a): Workflow for VS.

For Ligand based screening

Databases Asinex, Chem-Bridge, ChemDiv, Enamine, sand Life Chemicals, ZINC database

Preliminary Screening Lipinski’s “rule of 5” and Veber filters

Virtual Screening

Using JChem

(a) 2D Fingerprint-Based Screening

(b) Structural (hashed chemical) fingerprints

Secondary screening
pKa descriptor

ADMET using the Schrödinger software module QikProp
3D Pharmacophore-Based Screening HipHop algorithm
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Table 1.3(b): Workflow for Docking.
For Structure based screening

Target: SERT
Template: LeuT crystal structure PDB id 3F3A
Homology Model: Internal Coordinate Mechanics (ICM) version 3.5 Build Model macro
Minimization: side chain optimization- Montecarlo

Model validation:
ERRAT quality factor of 88.996

Ramachandran plot-91.8 percent of the residues were in the core regions
What Check report

Binding site Prediction and 
validation

(1) detection of the ligand binding pocket using the ICM Pocket Finder
(2) biased-probability Monte Carlo (BPMC) sampling and minimization of the pocket side chains

Docking (3) four-dimensional (4D) docking of fully flexible ligands into multiple pocket of 47 low-energy 
conformations of the ligand binding pockets

Scoring Virtual ligand screening (VLS) scoring function of ICM

Table 1.3(c): Workflow for Hit to lead.

For H2L- second in silico screening

Filters Basic property and ADMET filters, 3D pharmacophore models, and the flexible docking procedure

CASE STUDY 2: DEMONSTRATION OF BINDING MODE USING 
DOCKING PARAMETERS- STRUCTURE BASED METHOD

CADD methods based on docking can be used to evaluate the effect of functionalization/ 
modifications on binding of ligands, for e.g., whether an agonist retains its agonistic mode or 
not. This aspect becomes important for the study of the “functional status” of the receptors. The 
functional imaging has gained impetus due to its implication in several neuropsychiatric diseases. 
The binding pattern can be exploited to investigate the binding index of the neurotransmitter or 
drugs to receptors, thereby giving an insight of the functional status. The basis of the functional 
status underlies in the fact governing the GPCR proteins according to which the high affinity and 
low affinity states display preferential binding with agonist and antagonist. Antagonists bind to 
the High-Affinity (HA) and Low-Affinity (LA) conformations of receptor with comparable affinity. 
In contrast, agonists bind preferentially to the HA state of the receptor, which is coupled to 
G-proteins and therefore agonists provide a measure of functional receptors. The paradigm shift 
from mere imaging of receptors to simultaneously image and quantify functional, demands the 
design and evaluation of agonist based ligands [18]. 

Example 2.1 : Evaluation of Binding Pattern Using Structure Based Method 
And Homology Model

In the study published by Chaturvedi et al., [19] docking parameters were evaluated to 
understand the effect of functionalization on the natural ligand of serotonin. The ligand was to be 
developed an imaging agent for active 5HT1A receptors and involved the functionalization with 
the dithiocarbamate moiety. The study was carried using the Prime (homology modeling) and 
Glide (docking) modules of Schrodinger. The highlights of the study (refer Table 2.1also) were as 
follows:

(a) Homology model of 5HT1A using two templates – Two models were generated using 
human β2-adrenergic receptor in the absence (PDB 2RH1A) and in the presence (PDB 3D4S) of 
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cholesterol (Figure 5). The choice of the crystal structures was driven by (a) resolution wherein 
the 2RH1 has the highest resolution of 2.4 Ǻ, (b) template similarity for modeling of aminergic 
GPCRs (c) mimic for real situation wherein the receptors are found bound to cholesterol units as 
in PDB 3D4S. The 3D4S model was more compact than the 2RH1 model. 

(b) Docking of the ligands- Based on the binding pattern as exemplified by amino acids 
involved with serotonin- the natural ligand and the modified ligand, it was inferred whether the 
modified ligand will exhibit the agonistic mode or the antagonistic mode of binding. Thus, the 
study is based on Ligand site comparison.

(c) Further, in this study, the effect of cholesterol in the CCM (Cholesterol Consensus motif) of 
the receptor was also studied. The ligand reflected enhanced binding in the presence of cholesterol 
that can be ascribed to increase in hydrophobic interactions.

Figure 5: Comprehensive depiction for Example 2.1 [19] where (a) binding mode of SER (b) 
binding mode of SER-DTC on 2RH1 model (C) binding mode of SER-DTC on 3D4S model.
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Table 2.1: Workflow for binding mode prediction.
Target: 5HT1A 

Template: 2RH1A and 3D4S 

Homology Model: 

Clustal_W under the GPCR specific mode 
(a) highly conserved residues1 in each TM were anchored 

(b) gaps in the helices were manually removed 

Minimization: Prime module of Schrodinger and Loop refinement 

Model validation: 

PROCHECK 
Ramachandran plots 

≈98% of the residues are in overall allowed regions for both templates 
VADAR: 3D4S based model was more compact than the 2RH1 

Binding site Prediction and validation Site map and Site-directed mutagenesis data 

Docking and Scoring Glide module of Schrodinger in extra precision XP mode: G-score and DOCK score 

CASE STUDY 3: EFFECT OF MULTIVALENT INTERACTIONS ON 
RECEPTOR BINDING- STRUCTURE BASED METHODS

Polyvalency in biological systems is an important concept. Multivalent ligands bearing multiple 
pharmacophores are emerging as important therapeutic ligands because of their enhanced 
binding affinity [20]. Thus, study of the interaction on binding of a ‘bivalent ligand’ wherein two 
or more pharmacophores are linked by a functional spacer and is capable of interaction with two 
neighbouring receptors or at two sites of the same receptor becomes imperative (Figure 6). 

Figure 6: Schematic representation of the workflow to assess the binding pattern for bivalent 
ligand.
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Example 3.1: Dimeric Ligand with Two Sites on the Monomeric Receptor.

The study reported by Sethi et al. [21], reflects the selectivity of the bivalent ligand for 
dopamine D2 receptor. As reported by the authors, dopamine D2 receptor (D2R) model was 
built making use of its high sequence similarity with D3 receptor. The PDB 3PBL is a lysozyme-
chimeric protein (hD3-lysozyme chimera) modified for crystallisation and purification. Using the 
modelling studies, the authors could establish enhanced binding through multivalent interactions 
and calculate the binding affinity for the ligand.

Example 3.2: Predicting the Enhanced Binding of Dimeric Ligand on 
Monomeric/ Higher Order Receptor

Bivalent ligands are known to exhibit favourable thermodynamics than monovalent ligands. 

In the study of Hazari et al. [22], monomeric, homodimeric, and multimeric 5-HT1A receptor 
models were built and screened for the binding pattern of a bivalent ligand. The main highlights 
are as follows:

(a) Homology models were built using the template β2-adrenergic receptor, 2RH1. Schrodinger 
software was extensively used for the study with Prime module for model generation, Glide and 
Induced fit for docking studies. 

(b) Sequence alignment was performed using Clustal W under the GPCR- specific mode.

(c) Secondary structure prediction, supported with PSIPRED, was performed, and this is best 
known for optimal predictions.

(d) For the higher order structures PDB 1N3M was used. 1N3M is a theoretical model. It was 
used as a reference because it gave extended coordinates for tridimensional oligomeric model. 
The generated models were re-validated using standard tools.

(e) The models were validated using Ramachandran Plot and PROCHECK server. The authors 
inferred that high stabilization of the bivalent ligand due to the π-π interactions and hydrogen 
bonding resulted in high docking score of the ligand as compared to the monovalent ligand. Also, 
the modifications did not alter the antagonistic binding pattern of the ligand.

CASE STUDY 4: ENZYMES AS TARGETS FOR NEURO-INHIBITORS 
Brain also houses enzymes which are involved in the metabolism of various neurotransmitters 

and the enzymes have been implicated in various disorders. Acetylcholinesterase inhibitors are 
widely used for the treatment of Alzheimer’s disease and are the only FDA-approved AD therapies. 
These inhibitors slow the turnover of the neurotransmitter acetylcholine in the synapse. Non-
competitive inhibitors may produce slow reversible ChE inhibition and the long term effects of 
slowly reversible, or irreversible, inhibitors on the overall cholinergic function are difficult to 
predict. Thus, design of inhibitor against the enzyme reflects another dimension of CADD for 
neuroligands [23].
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The study which follows is based on energy calculations using molecular mechanics and 
quantum mechanical tools.

Example 4.1: Design of Reversible Inhibitors and Regenerators

Organophosphates are reversible inhibitors of acetylcholineesterase are used in the treatment 
of AD. However, organophosphates can cause interruption of AChE-mediated mechanism 
because the inhibited enzyme undergoes phosphorylation and regenerates very slowly leading 
to tremors, coma, and ultimately death. Design of reversible AChE inhibitors is thus important for 
the regeneration of irreversibly inhibited acetylcholineesterase from organophosphates. Hence 
with an aim to probe potential molecules as anticholinesterase inhibitors and as reactivators, 
computationally structure-based approach has been exploited in the work of Chadha et al. [24], 
for designing novel 2-amino-3-pyridoixime-dipeptides conjugates. The authors combined MD 
simulations with flexible ligand docking approach to determine binding specificity of 2-amino-
3-pyridoixime dipeptides towards AChE (PDB 2WHP). The highlights of this study are as follows:

(a) MM-GBSA (Molecular mechanics +generalised Born surface area) provides approximate 
free energies of binding and were correlated with the docking score. The docking results depicted 
complementary multivalent interactions along with good binding affinity as predicted from MM-
GBSA analysis. 

(b) In order to gain insight on the mechanism, MD simulations under explicit solvent systems 
with NPT and NVT ensemble were carried to uncover the dynamic behavior of 2-amino-3-
pyridoxime-(Arg-Asn) and expose its mobile nature and interactions. What was inferred from 
these studies were ability to form strong long range order contacts towards active site residues 
of the dioxime peptide, its approach towards inhibited serine residue and the hydrogen bonding 
contacts.

(c) For complete potential surface profile, 2-amino-3-pyridoxime induced reactivation 
pathway of sarin-serine adduct was investigated by the DFT approach. The authors concluded 
from DFT’s transition state search and reaction scan, that oxime-Arg-Asn is able to reactivate 
phosphorylated serine residue along the barrierless pathway in gas and solvent phase model. 

CONCLUSION
In this section, various applications of the CADD have been discussed specifically using 

reports on the development of neuroligands. The four sections are dedicated for three technique 
packages (a) virtual screening using ligand and structure based methods (b) homology modelling 
and docking studies and (c) molecular mechanics and quantum mechanics application for design 
of ligands. 

The future of CADD in design of neuroligands is promising and is being increasingly applied 
to study different aspects- leads screening, binding modes, mechanistic aspects of receptor 
activation/ deactivation on binding with agonists/ antagonist respectively, prediction of transition 
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states and possible mechanism of inhibition/ reactivation on binding of inhibitors/ reactivators 
respectively with the enzymes.

Appendix 1: Table of comprehensive list of PDB [8], [25].

2007 b2, inactive T4L fusion carazolol 2.40 2RH1 Referenced in [8]

2007 b2, inactive Fab complex carazolol 3.40 2R4R Referenced in [8]

2008 b2, inactive T4L fusion timolol 2.80 3D4S Referenced in [8]

2010 b2, inactive T4L fusion ICI 118551 2.84 3NY8 Referenced in [8]

2010 b2, inactive T4L fusion Benzofuran derivative 2.84 3NY9 Referenced in [8]

2010 b2, inactive T4L fusion Alprenolol 3.16 3NYA Referenced in [8]

2011 b2, active Nanobody stabilised BI-167107 3.50 3P0G Referenced in [8]

2008 b1, inactive StaR cyanopindolol 2.70 2VT4 Referenced in [8]

2011 b1, inactive StaR salbutamol 3.05 2Y04 Referenced in [8]

2011 b1, inactive StaR dobutamine 2.50, 
2.60 2Y00, 2Y01 Referenced in [8]

2011 b1, inactive StaR carmoterol 2.60 2Y02 Referenced in [8]

2011 b1, inactive StaR isoprenaline 2.85 2Y03 Referenced in [8]

2011 b1, inactive StaR carazolol 3.00 2YCW Referenced in [8]

2011 b1, inactive StaR iodocyanopindolol 3.65 2YCZ Referenced in [8]

2012 b1, inactive StaR bucindolol 3.20 4AMI Referenced in [8]

2012 b1, inactive StaR carvedilol 2.30 4AMJ Referenced in [8]

2013 b1, inactive StaR 4-(piperazin-1-yl)-
1H-indole 2.80 3ZPQ Referenced in [8]

2013 b1, inactive StaR 4-methyl-2-(piperazin-
1-yl) quinoline 2.70 3ZPR Referenced in [8]

2008 A2A, inactive T4L fusion ZM241385 2.60 3EML Referenced in [8]

2011 A2A, active T4L fusion UK-432097 2.71 3QAK Referenced in [8]

2011 A2A, inactive StaR caffeine 3.60 3RFM Referenced in [8]

2011 A2A, inactive StaR XAC 3.31 3REY Referenced in [8]

2011 A2A, inactive StaR ZM241385 3.30 3PWH Referenced in [8]

2011 A2A, active StaR NECA 2.60 2YDV Referenced in [8]

2011 A2A, active StaR adenosine 3.00 2YDO Referenced in [8]

2012 A2A, inactive StaR 1,2,4-triazine derivative 3.27 3UZA Referenced in [8]

2012 A2A, inactive StaR 1,2,4-triazine derivative 3.34 3UZC Referenced in [8]

2012 A2A Fab complex ZM241385 3.10 3VGA Referenced in [8]

2012 A2A Fab complex ZM241385 2.70 3VG9 Referenced in [8]

2012 A2A inactive BRIL fusion ZM241385 1.8 4EIY Referenced in [8]

2012 S1P1 inactive T4L fusion ML056 2.80 3V2Y Referenced in [8]

2010 CXCR4 inactive T4L fusion IT1t 2.50 3ODU Referenced in [8]

2010 CXCR4 inactive T4L fusion CVX15 2.90 3OE0 Referenced in [8]

2010 D3 inactive T4L fusion eticlopride 2.89 3PBL Referenced in [8]

2011 H1 inactive T4L fusion doxepin 3.10 3RZE Referenced in [8]

2011 b2, active inactive T4L fusion agonist complex 3.5 3PDS [26]
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2015 A2A active-like thermostabilised agonist CGS21680 2.6 4UG2 [27]

2014 class C mGluR5 -- mavoglurant 2.6 4OO9 [28]

2000 Rhodopsin, inactive -- 11-cis-retinal 2.8 1F88 [29]

2004 Rhodopsin, inactive -- 11-cis-retinal 2.2 1U19 [30]

2011 b2-Gs complex complex 3.2 3SN6 [31]

Oligomeric structures

2006 Rhodopsin theoretical model -- -- 1N3M [32]

2013 β1- basal state thermostabilizing mutations ligand-free 3.50 4GPO [33]

2014 class C mGluR1 -- FITM 2.8 4OR2 [34]
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BRIEF INTRODUCTION
Dengue, including dengue fever, dengue haemorrhagic fever and dengue shock syndrome is 

among the major causes of morbidity and mortality, especially in children in many endemic Asian 
and South American countries [1,2]. Recent study estimated 390 million cases of dengue infection 
worldwide annually [3]. WHO stated that 40% of the world’s population, which are in the tropical 
or sub-tropical regions of the world, is at risk from dengue infections [4]. Two predominant 
arthropod vectors, Aedes aegypti and Aedes albopictus, are implicated in the disease transmission 
[5-8]. However, to date, there is no licensed vaccine or anti-viral drug available in the market to 
protect against dengue diseases [9]. 

Rational Drug Discovery: Virtual Screening 
of DEN-2 Non-Competitive Inhibitors
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Boesenbergia rotunda (L.) Mansf. (synonym of Boesenbergia pandurata), known as fingerroot, 
Chinese ginger (China and Southeast Asia) or “temu kunci” (Malaysia and Indonesia) [10], is a 
common spice and herb belonging to the Zingiberaceae (ginger) family. Its extract has been reported 
to contain essential oils [11] and various small compounds such as boesenbergin, cardamonin, 
pinostrobin, pinocembrin, alpinetin, panduratin A, 4-hydroxypanduratin A, 5,7-dimethoxyflavone 
and 1,8-cineole [12-14]. It was previously reported that cardamonin (a chalcone) and pinostrobin 
(a flavanone) showed non-competitive inhibition towards DEN-2 NS2B-NS3 proteolytic activities, 
while panduratin A and 4-hydroxypanduratin A (both cyclohexenyl chalcone derivatives) showed 
competitive inhibition activities [14]. 

In this study, the models of DEN-2 NS2B-NS3 were studied computationally (in silico) using 
cardamonin, R-pinostrobin and S-pinostrobin to verify the suitability of the models as target 
receptors for non-competitive inhibition studies. When this study was conducted, there was only 
one DEN-2 NS2B-NS3 protease crystal (PDB id: 2FOM) [15] available in the Protein Data Bank 
(PDB). On the other hand, other NS2B-NS3 protease crystals from West Nile Virus (WNV) (PDB 
id: 2FP7; 2GGV; 2IJO; 3E90) [15-17], DEN-1 (PDB id: 3L6P; 3LKW) [18] and DEN-3 (PDB id: 3U1I; 
3U1J) [19] have been reported. A few homology modelling studies of DEN-2 NS2B-NS3 have been 
performed using Hepatitis C Virus (HCV) NS3-NS4A (PDB id: 1JXP) [20,21], a mixture of NS2B 
from 2FP7, NS3 from 2FOM, 2FP7 and whole 2IJO [22] as templates. These studies focused on 
the active site (for competitive inhibition) of the protease. A suitable model for non-competitive 
inhibition (other than the active site) has yet to be explored.

Virtual screening of a series of small compounds from the ZINC database [23] with backbone 
structures similar to chalcone, flavanone and flavone were then performed towards the suitable 
DEN-2 NS2B-NS3 model in an attempt to discover potential non-competitive inhibitors. The 
selected compounds were then submitted to DEN-2 NS2B-NS3 protease cleavage inhibition assay 
to validate their activities in vitro. A novel anti-dengue candidate was then obtained from the in 
silico and in vitro results.

CASE STUDY DESCRIPTION
Homology Model Building

In this study, nine models of DEN-2 NS2B-NS3 protease, namely 2FOM and eight homology 
models (DH-1 to DH-8) generated using 2FP7, 2GGV, 2IJO, 3E90, 3L6P, 3LKW, 3U1I and 3U1J as 
the templates, were evaluated in order to obtain a suitable model for non-competitive inhibition 
study.

The crystal structures of the templates were obtained from the PDB. The homology models 
were built based on the amino acid sequence of PDB id: 2FOM.After removing water molecules 
and the substrates (if present) from the templates, homology models of the DEN-2 NS2B-NS3 
protease were generated using Modeller 9.11 software [24]. Amino acid sequences alignment was 



149Software and Techniques for Bio-Molecular Modelling | www.austinpublishinggroup.com/ebooks
Copyright  Rahman NA. This book chapter is open access distributed under the Creative Commons Attribution 
4.0 International License, which allows users to download, copy and build upon published articles even for com-
mercial purposes, as long as the author and publisher are properly credited. 

performed using Clustal X 2.0 software [25,26]. The sequence alignment showed that there is more 
than 50% identity between the crystal structures. Hence, the crystal structures are suitable to be 
used as template for DEN-2 protease homology model building. This is because a protein model 
that shares more than 30% sequence identity with another protein is indicative of an accurate 
structure for homology modelling [27]. Homology modelling was carried out by referring to the 
Modeller online manual [28], and run by using the command line:

mod9. 11 model-default.py

Ten homology models were generated using each of the templates above and were analysed 
using Ramachandran plots generated by Procheck software, to check the stereochemical quality 
of the protein structure [29]; and Verify3D software, to determine the compatibility of the 3D 
atomic models with their own 1D amino acid sequence [30]. These software’s are available in their 
online server versions at the Structural Analysis and Verification Server of UCLA (University of 
California, Los Angeles; http://nihserver.mbi.ucla.edu/SAVES/). Several homology models were 
obtained for each template, and a model that produced the best scores in structural analyses, 
namely DH-1 to DH-8, were then selected for subsequent docking (blind) studies.

Docking of Standard Compounds

Blind docking allowed the ligands to be docked freely to the whole structure of the 
macromolecule. In this study, blind docking of the ligands into the DEN-2 apo protease (2FOM), 
and the homology models obtained, was performed using AutoDock 4.2 software. Chlorine atoms, 
water and glycerol molecules were removed from the 3D crystal structure of DEN-2 NS2B-NS3 
apo protease (2FOM) [15] was retrieved from the PDB, and. AutoDock Tools 1.5.4 software 
was then used to add all hydrogen atoms, merging nonpolar hydrogen atoms, checking and 
repairing missing atoms, adding Gasteiger charges, checking and fixing total charges on residues, 
and assigning atom types to the protein structure. A grid box of the protein structure was then 
generated using AutoGrid 4 software with default atom types (carbon, hydrogen, oxygen and 
nitrogen), grid spacing of 0.41 Å, dimension of 126 x 126 x 126 points along the x, y and z axes, 
and centered on the protein, covering the whole protein for the blind docking. 

As for the homology models, DH-1 to DH-8, docking parameters were set following those 
described above for 2FOM using the AutoDockTools 1.5.4 software.

Cardamonin, R-pinostrobin and S-pinostrobin were used as standard ligands.  Structures 
(3D) of these ligands were constructed using Hyperchem Pro 8.0 software. The energies of all 
the ligands were minimized using Hyperchem Pro 8.0 software, employing the steepest descent 
and conjugate gradient methods (termination conditions set to a maximum of 500 cycles or rms 
gradient of 0.1 kcal/Å mol) [31]. The minimized structures were subsequently prepared with 
detected root of torsion and number of torsions for flexible-ligand docking using AutodockTools 
1.5.4 software and saved as “ligand’s name”.pdbqt (e.g. cardamonin.pdbqt).
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Parameters for blind docking of flexible ligands to DEN-2 protease were set to a population 
size of 150 individuals, and 10,000,000 number of energy evaluations for 100 runs to produce 
100 distinct conformations using the Lamarckian genetic algorithm search function [32]. The 
resulting 100 distinct conformations were set to be clustered in the same group with RMSD of 
not more than 0.5 Å, for the ease of analysis. The flexible-ligand docking (blind) for each of the 
ligand was performed by applying all the parameters stored in the docking parameter file, namely 
“ligand’s name”.dpf.

AutoGrid 4 and AutoDock 4.2 softwares were installed in a workstation running on Ubuntu 
10.04 Linux operating system. Grid map generation was run following instructions in the 
“AutoDock Version 4.2” user’s manual [33] using the command line:

autogrid4 -p protein.gpf -l protein.glg

and docking job was run using the command line:

autodock4 -p ligand.dpf -l ligand.dlg

After the docking jobs were completed, the compounds were ranked based on the lowest 
estimated mean free energy of docking (∆Gdock) coupled with the largest NumCl (number of 
conformations in a cluster).The number of distinct conformations that were grouped into the 
same cluster based on RMSD. ∆Gdock was calculated using Autodock 4.2 software, while the 
estimated inhibition constant (Ki) was calculated using the formula [32]:

Ki dock = e∆Gdock/RT

where R is the gas constant, 1.987 cal K-1 mol-1, and T is the reaction or body temperature, 
310.15 K (37 oC).

(NumCl) was used as a measure of the probability of a particular conformer to interact with the 
macromolecule target, where the higher NumCl number is proportionate to increased probability 
of interaction. All of the docked conformers were then analysed for binding interactions using 
Ligplot 4.5.3 software. The hydrogen bonding distance was set to a range of 2.7 to 3.35 Å, and 
the hydrophobic interaction distance was set to a range of 2.9 to 3.9 Å [34]. For selection of 
conformation with the best binding affinity, the conformation having the largest NumCl and 
exhibiting interaction with Lys74 from NS3, was selected from the docked conformational cluster. 
In cases where there were two or more clusters with similar NumCl (difference in NumCl ≤ 10), 
the cluster that showed lower ∆Gdock was chosen. Further interaction analyses using Discovery 
Studio Visualizer 3.1 (Accelrys Software Inc.) were performed for better insight.

The most suitable DEN-2 NS2B-NS3 protease model for non-competitive inhibition study was 
then identified following the completion of analyses of results.
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Virtual Screening

Autodock 4.2 software was used for virtual screening. The docking input files for the suitable 
model of DEN-2 NS2B-NS3 protease for non-competitive inhibition were prepared following the 
method described previously. The docking parameters of the compounds involved were modified 
to a population size of 150 individuals, and 1,750,000 number of energy evaluations for 20 runs 
using the Lamarckian genetic algorithm search function. Twenty distinct conformations that were 
produced were further clustered into the same group (NumCl) with RMSD of not more than 2.0 
Å. The docking parameters were modified to reduce the duration for running the large number 
of docking calculations in the virtual screening process. R-pinostrobin was used as the standard 
since pinostrobin’s reported Kiexp value (345 ± 70 µM) was smaller than cardamonin’s (377 ± 77 
µM) [14] and R-pinostrobin produced lower ∆Gdock than S-pinostrobin. Redocking of R-pinostrobin 
was done using the same docking parameters. 

A series of small compounds with structures having more than 50% similarity to chalcone 
(3,458), flavanone (4,886) and flavone (4,997) (Figure 1) were downloaded from the ZINC 
database [23]. Raccoon 1.0 software [35] was used for the preparation of all the input files for the 
virtual screening.  

Figure 1: Structures of the chalcone, flavanone and flavone.

Virtual screening was run by using a script file generated by Raccoon 1.0, which sequentially 
and automatically runs the docking of all the compounds DEN-2 NS2B-NS3 protease using 
AutoDock 4.2. After completion, the compounds were ranked based on the lowest estimated 
binding energy with largest NumCl for ease of analysis.

Analysis of In Silico Result

Bash 4.1 software [36] was used to program automated sequential data submission, extraction 
and identification for high-throughput analysis. Compounds with ∆Gdock lower than the ∆Gdock 
for both of the standards (cardamonin and pinostrobin) and with NumCl more than 10, were 
further subjected to interaction analysis using Ligplot 4.5.3 software using the same parameters 
as described previously. Data about the group, name, NumCl, ∆Gdock, Kidock value, and interaction 
properties (hydrogen bonding and hydrophobic interactions) for each compound were extracted. 
Further interaction analyses using Discovery Studio Visualizer 3.1 were also performed. 

Further selection of the compounds was then carried out to identify potential non-competitive 
inhibitors, based on the lowest ∆Gdock and interaction with Lys74 from NS3 [31]. The selected 
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compounds were then traced from the ZINC database for their availability for purchase. The 
purchased compounds were then subjected to DEN-2 protease inhibition assay for activity 
verification.

Verification of In Silico Result

 From the virtual screening of 13 341 small compounds, 4 were identified to fulfill all 
the criteria of having ΔGdock lower than that of R-pinostrobin (standard), NumCl more than 10, 
interacting with the suggested residue in the allosteric binding site (Lys74 from NS3), and are 
available for purchase (Figure 1). The in vitro DEN-2 protease inhibition assay for verification 
of in silico result for this study was performed following methods reported in previous studies 
[37,38]. Three out of the 4 tested compounds (compounds 1,2 and 4; Figure 2) showed significant 
better non-competitive inhibition activity when compared to the standard with compound 1 
producing the most potent effect (Table 1).

 Figure 2: Structures of the small compounds identified from virtual screening against 
the DH-1 homology model, and were purchased due to their availability.
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Table 1: NumCl, ∆Gdock and Kidock values of the best binding conformations of the small 
compounds from virtual screening towards DEN-2 NS2B-NS3 protease (homology model DH-1) 

compared to the Kiexp values obtained from protease bioassay in this study.

Compound Compound Identity NumCl ∆Gdock
(kcal mol-1) Ki dock (µM) Ki exp (µM) 

in this study
1 2-phenyl-6-(1H-1,2,3,4-tetraazol-5-yl)-4H-chromen-4-one 12/20 -6.17 45 69±9*

2 2-[4-(dimethylamino)phenyl]-5,7-dimethyl-3,4-dihydro-2H-1-
benzopyran-4-one 13/20 -5.77 86 121±14*

3 6-phenyl-6a,12a-dihydro-6H,7H-chromeno[4,3-b]chromene 15/20 -5.33 175 510±120

4 2-(2,3-dihydro-1,4-benzodioxin-6-yl)-3,4-dihydro-2H-1-
benzopyran-4-one 11/20 -5.29 187 186±38*

Standard R-pinostrobin 6/20 -4.89 358 415± 85@

NumCl = the number of conformations with RMSD < 2.0.

∆Gdock = free energy of binding estimated from AutoDock 4.2 software.

Kidock = inhibition constant derived from ∆Gdock.

*indicates significant different (p value < 0.05) of unpaired t-tests for Kiexp values of compounds 
1 - 4 compared with Kiexp value of standard pinostrobin.

@value is indicated for pinostrobin (not stereospecific)

CONCLUSION
 Virtual screening of potential non-competitive inhibitors for DEN-2 NS2B-NS3 protease 

was performed yielding several compounds with higher binding affinities than the standard 
ligand used in this study. The results from in vitro inhibition assays supported the in silico results 
obtained. Compound 1 was found to be the best non-competitive inhibitor of DEN-2. This study 
also proposes that for non-competitive inhibition studies on DEN-2 NS2B-NS3 protease, an 
appropriate model should exhibit conformation of the allosteric binding site that resembles the 
homology model DH-1 (2FP7 as template). In conclusion, the rational discovery method described 
here has potential for use in the discovery of lead compounds for the treatment for dengue, as 
well as other disease targets.
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INTRODUCTION
Design and discovery of novel drug lead molecules is of critical importance in human health 

care. The detailed and in-depth information about how drug compounds interact with the protein 
targets is essential for the development of newer candidate drug molecules. Computational 
approaches have emerged to be extremely relevant in rational drug design and have been 
embraced for developing and determining the molecule which would be most suitable for 
entering the drug development pipeline. This involves the in silico modeling of the designed 
lead compounds into the active site of the target protein for their best fit considering both 
steric aspects and functional group interactions so as to predict its activity and binding affinity 
towards the target protein. This approach is referred to as protein-ligand or molecular docking. 
Molecular docking is thus today, a well developed computational method to predict the most 

Comparative Evaluation of Docking Programs: 
A Case Study with Small Peptidic Ligands
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probable binding mode/pose (position, conformation & orientation) of a small molecule (ligand) 
in the binding pocket or active site of a macromolecule (protein receptor) based on their spatial 
arrangement and chemical complementarity in order to maximize the interactions between them. 
This in silico technique thus can act as a three-dimensional (3D) filter to separate the probable 
hits (compounds that bind to the target and have the desired effect) and non-hits from large 
chemical compound libraries based on their shape and size and distribution of charges on surface 
of ligands complementary to a defined binding pocket. This computational weeding of ligands is 
known as Virtual Screening (VS) in contrast to in vitro screening of ligands referred to as High 
Throughput Screening (HTS) [1]. This method facilitates (i) enrichment of the chemical library 
by pin pointing newer druggable compounds and (ii) scaling down the ligand compound dataset 
for in vitro testing (chemical screening) resulting in cost reduction. Molecular docking today has 
gradually become an indispensible technique in the drug discovery pipeline for the identification 
of potential lead compounds due to its rapidity and cost-effectiveness [2].

Therapeutic agents/drugs are generally organic compounds that interfere with the biological 
activity of the target protein or nucleic acid. They include a rigid scaffold and contribute to the 
development of resistance [3] due to mutations in the target or efflux/influx genes especially in 
rapidly growing cells like cancer cells or in microbes. Multi-drug resistance is a cause of concern 
around the world and has necessitated the requirement for newer potent drugs. Consequently, 
the pharmaceutical industry is continuously on the lookout for novel mutation resilient drugs. 
Peptides form ideal candidates in this quest [4] for they are less toxic in comparison to organic 
compounds as they mimic the natural components in the human body. They are comparatively 
more target specific as they have higher affinity for a protein target leading to improved potency 
and efficacy. Moreover, peptides possess greater conformational flexibility than the comparatively 
rigid core of presently available drug leads and hence expected to be less prone to resistance. 
Peptides are also able to generate tremendous diversity due to possibility of twenty different 
constituent amino acids. Limitation of role of peptides as drug lead compounds is their lower 
stability at low pH of gut. However, modified peptides can provide stable lead compounds. Hence, 
specificity, conformational flexibility and presence of a well-developed elimination system in 
the host indicate that small peptides can form an ideal class of potential lead compounds for the 
development of potent drugs. 

In vitro screening is an expensive exercise as it would require the synthesis of a large number 
of peptides of variable lengths and composition. Hence, molecular docking based in silico 
screening of peptide libraries would tremendously reduce the cost and filter out unlikely hits. 
Various molecular docking programs have been developed, optimized and evaluated mainly for 
the screening of chemical libraries of organic compounds. The reports on comparative evaluation 
of docking programs with regard to organic ligands [5-11] indicate that their predictive power in 
combination with various scoring functions varies from one to another with respect to the class 
of receptor proteins as well as flexibility of ligands. Therefore, a careful selection of the docking 
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program is an important criterion before initiating the computational analysis for peptide 
ligands. To date, a comparative analysis and evaluation of docking programs with regards to 
peptide ligands is not available. The objective of this case study is to assess the predictive power 
of three commonly used docking programs for peptide ligand docking to facilitate the choice of a 
relatively more reliable program. These programs include the open source (AutoDock) [12] and 
two softwares on the commercial platform (GOLD [13] and Glide [14]). 

MOLECULAR DOCKING
Molecular docking approach concerns the (i) sampling of conformational, rotational and 

translational space of the ligand in the binding pocket of the protein and subsequently (Figure 
1a and 1b) (ii) ranking the potential solutions generated in the form of docked poses (positional 
conformers) based on their appropriate placement in the active site of the protein [15]. A 
molecular docking program comprises two components; a search algorithm to generate the 
conformations and subsequently dock them in the binding pocket and a scoring function to rank 
those docked conformations. Search algorithms basically follow either a systematic or a random 
approach to produce diverse sterically feasible conformations of the ligands in the binding pocket 
by varying the flexible/rotatable bonds. This generates a large number of possible conformations 
for a single ligand. All these probable conformations are subsequently docked into the binding 
pocket of the protein to arrive at the best fit conformation which will yield the highest affinity and 
activity towards the target protein. Systematic search algorithms look for all the conformations 
of the ligand based on torsional degree of freedom in a stepwise manner according to defined 
parameters. This approach includes an incremental construction based search algorithm 
(implemented in the program DOCK [16,17] and Glide [14]) and molecular dynamics simulation 
based search algorithm (CDocker [18]). Random search algorithms explore conformations by 
varying the flexible torsions randomly. Genetic algorithm (AutoDock [12], GOLD [19]) and Monte 
Carlo simulation based algorithm (LigandFit20) are based on the random search approach. Out 
of the two, systematic search is comparatively more exhaustive and deterministic as it explores 
all feasible potential conformations in a stepwise manner and hence has a lesser probability of 
missing a true solution or conformation. As a result this approach is computationally extensive 
and time consuming. In contrast, the random search methods are rapid but non-deterministic and 
may overlook a correct potential conformation. Most docking programs utilize a combination of 
both these strategies, eg the programs DOCK and Glide initially involve an exhaustive incremental 
search followed by refinement with Monte Carlo simulations. 
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Figure 1a: Cartoon representation of molecular docking of receptor (R) and ligand (L). (a) 
Ligand translates in the receptor binding pocket looking for complementary region and 
(b) reorients in the suitable binding pockets by rotation in all three dimensions and (c) 

simultaneously conformation of ligand changes to maximize the interactions between them.

Figure 1b: Representation of (a) molecular docking of ligand (L) in receptor (R). The probable 
conformations adopted by the ligand on translation, rotation and subsequently docking in the 
binding site pocket are shown in (b), (c), (d) and (e). The docked conformation (e) has the best 

free energy of binding and is the most probable mode of binding.

Molecular Docking utilize scoring functions to rank the generated docked conformations. 
Scoring functions can be classified into three categories namely force field based, empirical and 
knowledge based scoring functions. Force field based scoring functions (DockScore [16], GoldScore 



160Software and Techniques for Bio-Molecular Modelling | www.austinpublishinggroup.com/ebooks
Copyright  Kaur P. This book chapter is open access distributed under the Creative Commons Attribution 4.0 
International License, which allows users to download, copy and build upon published articles even for commercial 
purposes, as long as the author and publisher are properly credited. 

[19], CDocker Energy [18], G-Score [21], D-Score [21]) estimate the actual interactions between 
receptor and ligands based on force field parameters and thus rank these docked poses without 
any bias. However, the score obtained can vary from force field to force field due to differences 
in parameters and/or method employed to estimate the ligand-protein interactions. The major 
disadvantage of this scoring function is that it is solely dependent on enthalpic contribution of 
binding and does not include the entropic and solvation/desolvation contributions which play a 
major role in the binding process. As a result, it is unable to estimate the free energy of binding 
(ΔG = ΔH –TΔS) or binding constants (ΔG = -nRTlnKd). Empirical scoring functions (LigScore [22], 
LUDI score [23,24], ChemScore [25], F-Score [26], X-Score [27]) rank the solutions according to 
the estimated free energy (ΔG) of binding between the receptor and docked ligand pose based 
on empirically derived energy function. This takes into account enthalpic as well as entropy and 
solvation/desolvation contributions on binding and hence provides a quantitative estimate of 
binding strength. During this form of scoring process, actual enthalpic contributions (like ionic 
interactions, hydrogen bond, aromatic interactions lipophilic interactions,) as well as entropic 
contributions (depending on number of rotatable torsions) are calculated and then each of 
them is multiplied by respective regression coefficient. Similarly a regression co-efficient is 
also calculated for solvation effect. The regression coefficient for each of the contributing factor 
in ligand binding is derived from the dataset of protein-ligand complexes to correlate/fit the 
predicted binding constant with their experimental values. The accuracy of predicted binding 
constant in empirical scoring is dependent on the experimental dataset used for regression 
analysis to derive the energy function and can therefore, be biased. Consequently, empirical 
scoring function may fail to predict accurately the binding constant for ligands whose similar 
ligands are not present in dataset used to calculate the regression co-efficient. Knowledge-based 
scoring functions (PMF [28,29], ASP [30], DrugScore [31], SMoG [32]) calculate the statistically 
weighted atom pair potentials between ligand and receptor protein derived from knowledge base 
of 3D structures of receptor-ligand complexes (PDB [33], CSD [34]). Since these are derived from 
actual experimental structures they include the entire repertoire of contributing factors to ligand 
binding unlike force field based scoring function. Neither are these empirically derived from a 
selected dataset but from part of an entire database and when compared to empirical scoring 
functions are less likely to be biased. Many commonly used docking programs like AutoDock 
and Glide use semi-empirical scoring functions that are hybrid of empirical and force field based 
scoring functions. Scoring functions encompasses both merits and limitations and might possibly 
complement each other. Therefore, a consensus of all scoring functions could prove to be a better 
strategy to rank the docked poses. In a majority of cases docking programs generate the correct 
solution but subsequently fail to rank them correctly partly due to imperfect scoring functions. 
The primary role of scoring functions is to rank the generated poses to identify the best pose 
amongst them based on their highest score. All three kinds of scoring functions are capable of 
performing this action. Their secondary role is to estimate the quantitative strength of binding 
(binding affinity) and only empirical (including semi-empirical) class of scoring function is able to 
calculate this reliably due to inclusion of entropic and solvation parameters along with enthalpy. 
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The predictive power of the binding mode of ligand depends on the ability of docking program 
to generate and replicate the native crystal orientation and geometry of ligand as observed in the 
protein 3D structure. Similarly predictive power of docking programs to calculate the binding 
affinity of ligand towards the protein after protein-ligand docking depends on its potential to 
correctly reproduce the experimental activity data. These values are dependent on the robustness 
of search algorithms as well as scoring functions. Knowledge based and force field based scoring 
functions provide an idea about the comparative binding strength (qualitative estimate to 
differentiate a ligand with higher affinity to the protein from another with low affinity) amongst 
different ligands docked in the same binding pocket but are unable to assess the binding constant 
as they do not calculate the free energy of binding. On the other hand, the empirical scoring 
functions have the ability to predict the binding constant (quantitative estimate like 9.4 kcal/
mol). However, these may fall short in cases where ligand is dissimilar from ligands in dataset 
used to derive the regression coefficient. A more accurate way to calculate the free energy of 
ligand binding in receptor complex are molecular dynamics based approaches of Free Energy 
Perturbation (FEP) and Thermodynamic Integration (TI)35,36. These are based on statistical 
thermodynamic ensembles which take appropriate account of solvation due to presence of 
explicit water molecules. The accuracy of calculated free energy of binding is dependent on the 
versatility (parameterization with large variety of small molecules, ability to handle the metal 
ions and effect of polarization) of the force field and conformational sampling ability of molecular 
dynamics simulation. The force fields employed in the docking programs are well parameterized 
for proteins but do not contain accurate parameters for millions of non-peptidic drug-like 
compounds. The major drawback of this method is that it is computationally too expensive (more 
than 1000-times in comparison to empirical scoring function) to be used for virtual screening of 
chemical library of millions of compounds.

METHODOLOGY
The first report for prediction of ligand binding in the active site pocket of receptor through 

computational modeling approach utilized the DOCK program [37]. Since then several docking 
approaches both open source and commercial eg DOCK, AutoDock, GOLD, Glide, FlexX [26], 
CDocker [18], LigandFit [20], Hex [38] have been developed. The various programs are being 
continuously improved to better their performance and accuracy. Peptide-based drugs are being 
explored as possible therapeutic agents, and presently a comparative study on docking programs 
is unavailable. Therefore, an analysis of the capability of three molecular docking programs to 
correctly dock and assess the peptide at the active site of the protein was undertaken. The strategy 
comprises re-docking the peptide into the protein binding pocket and evaluating the capability of 
the docking program to correctly predict the orientation and peptide–protein interactions when 
compared to that in the already determined experimental peptide-protein 3D structure available 
in the PDB [33]. The docking programs selected for this study are GOLD, AutoDOCK and GLIDE as 
they have different class of docking algorithms. 
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Programs

GOLD (Genetic Optimisation for Ligand Docking) is a commercial but comparatively low cost 
docking program considered to be the gold standard among docking programs. Its conformational 
search approach is based on Genetic algorithm similar to AutoDock. Genetic algorithm is an 
evolutionary strategy to explore the conformational flexibility of the ligand while simultaneously 
sampling the binding pocket. It uses empirical scoring function to rank the generated docked 
poses. 

AutoDock 4 is an open source docking program freely available to download. It is based on 
evolutionary algorithm (Lamarckian Genetic algorithm, a reverse variant of Genetic algorithm) for 
conformational search approach combined with semi-empirical scoring function which calculates 
free energy of binding between ligand and receptor based on precalculated grids. It also provides 
Monte Carlo simulated annealing option for conformational sampling of ligand. It is one of the 
more popular open source docking programs.

Glide is also a commercial docking program available from Schrodinger Incorporation. It uses 
systematic search algorithm incremental construction for conformational sampling of ligand with 
partial flexibility of receptor and utilizes a semi-empirical scoring function to calculate the free 
energy of binding for the ranking of generated docking conformations. Induced fit Glide docking 
also provides limited flexibility of receptor in loop region when used in combination of protein 
modeling program PRIME.

Dataset

 Peptide Binding Protein Database (PepBind) [39] is a derived database that contains structures 
of protein-peptide complex available in PDB. At least 8 representative structures each of peptides 
ranging from dipeptide to nonapeptide (including modified peptides) that are non-covalently 
complexed with proteins belonging to different protein families were included in this study (Table 
1). These peptides contain 9 to 41 rotatable torsion angles whereas the limitation of docking of 
programs to handle the conformational sampling in generally restricted to 20. Different protein 
families were chosen as these would have active sites with variable characteristics in order to 
sample a larger set of shape and size of binding pockets for docking of peptide ligands. This 
acquired dataset was utilized to evaluate the comparative ability of the three docking programs 
(AutoDock, GOLD and Glide) to reproduce the native geometry of the peptide as observed in the 
crystal structure. 
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Table 1: Comparison of docking of peptides with the experimental crystal structure.

Serial no. PDB ID Protein Family
Root mean squared deviation#

Glide Auto Dock GOLD

Dipeptide

1 1A16
Creatinase/

 N-terminal domain
0.871 0.731 4.721

2 3TMN Thermolysin-like 0.691 3.006 7.675

3 4D2C POT family 0.861 1.201 1.198

4 1HSB Class I Histocompatibility antigen 1.151 2.486 7.81

5 1ELE Pancreatic elastase 2.611 0.901 0.801

6 1ELD Pancreatic elastase 0.821 1.201 0.9810

7 1TMN Thermolysin 0.411 2.401 6.661

8 2EST Elatase 0.571 1.471 1.2810

Tripeptide

9 1FN8 Eukaryotic proteases 0.612 1.815 1.154

10 1HSB Class I Histocompatibility antigen 0.452 0.251 0.701

11 2B6N Subtilase 0.711 3.722 8.703

12 1A30 Retroviral protease 1.711 2.206 2.612

13 1BS6 Peptide deformylase 1.131 0.871 1.845

14 1OOK Eukaryotic proteases 1.221 0.794 0.801

15 2H9T Thrombin 0.801 0.584 0.731

16 1XVM Trypsin 0.553 1.251 0.6510

17 1ZY1 Polypeptide deformylase 0.811 0.551 0.732

18 2V3X Aminopeptidase P 1.262 0.831 1.198

Tetrapeptide

19 2I3H Inhibitor of Apoptosis domain 0.531 5.033 0.4210

20 1TW6 Inhibitor of Apoptosis domain 0.552 0.892 0.481

21 1W9E PDZ domain 4.702 1.271 7.371

22 2O1N Phospholipase A2 3.961 2.841 4.587

23 2NPH Retroviral aspartyl protease 4.501 3.5510 2.117

24 1DKY Hsp70 protein 1.977 1.9710 1.9610

25 3BRH Protein-tyrosine phosphatase 2.262 3.371 8.281

26 1UOO Prolyloligopeptidase 1.021 1.702 1.353

27 2Y1L Ankyrin repeats 1.897 1.341 0.937

28 1FCH Tetratricopeptide repeat 0.826 3.648 1.233

Pentapeptide 

29 1EVH RanBP1 domain 2.041 0.481 0.748

30 1BE9 PDZ domain 0.791 0.942 1.391

31 1BHX Eukaryotic proteases 1.801 1.721 8.881

32 1NVR Protein kinase 2.791 0.771 4.448



164Software and Techniques for Bio-Molecular Modelling | www.austinpublishinggroup.com/ebooks
Copyright  Kaur P. This book chapter is open access distributed under the Creative Commons Attribution 4.0 
International License, which allows users to download, copy and build upon published articles even for commercial 
purposes, as long as the author and publisher are properly credited. 

33 2B1N Papain family cysteine protease 0.992 1.821 4.276

34 2PCU Pancreatic carboxypeptidases 6.0610 4.019 1.299

35 2Z3N Leucyl/phenylalanyl-tRNA protein transferase 6.601 1.081 0.631

36 2QL5 Caspase domain 6.594 1.681 5.554

37 1OKV Protein kinase 3.959 1.731 7.472

38 3CBL Tyrosine protein kinase 1.051 3.261 9.706

39 2HPL PUB domain 1.391 0.761 0.941

Hexapeptide

40 3D9T Inhibitor of Apoptosis domain 1.722 3.031 0.471

41 2ZGH Trypsin 1.331 0.612 1.681

42 1TP5 PDZ domain 1.763 1.331 7.661

43 1E8N Prolyloligopeptidase 6.293 0.451 5.219

44 2MIP Retroviral protease 8.254 1.664 1.341

45 3DRI Bacterial extracellular solute-binding 1.192 1.226 3.181

46 1OL1 Protein kinase 1.461 2.531 4.595

47 1AWU Cyclophilinpeptidylprolylisomerase 2.233 1.131 1.802

48 1JW6 Legume lectin 8.117 3.694 10.194

49 1KL3 Avidin family 7.142 1.423 5.486

50 1JK4 Neurophysin II 3.531 1.821 1.538

51 2DS8 ClpX chaperone zinc binding domain 2.911 1.147 1.361

52 2FOP MATH domain 1.401 1.227 1.821

53 3DDA Clostridial neurotoxin zinc protease 5.711 1.052 4.031

54 1AWR Cyclophilinpeptidylprolylisomerase 2.781 1.455 3.001

Heptapeptide

55 2ZGJ Trypsin 1.693 0.885 1.671

56 1WBP Protein kinase 8.229 1.592 7.716

57 1E4X Anti-TGF-α antibody Fab fragment 3.561 0.605 6.001

58 1CZY MATH domain 1.201 1.214 1.911

59 3HBV Secreted protease C 3.297 0.651 1.991

60 1P7W Subtilase 4.1310 1.351 1.651

61 3CVQ Tetratricopeptide repeat 2.372 1.951 8.149

62 2PV1 FKBP immunophilin/prolineisomerase 3.011 1.151 4.151

63 1DKX Heat shock protein 70kD (HSP70) 4.259 1.303 7.219

64 1P7V Subtilase 8.059 1.461 1.932

Octapeptide

65 2PW1 2F5 Fab fragment heavy chain 7.335 1.992 7.875

66 1ELW Tetratricopeptide repeat 1.862 0.981 3.292

67 1D01 MATH domain 0.931 0.851 6.313

68 2DP4 Subtilase 5.661 2.682 9.027

69 3BOO Clostridial neurotoxin 7.195 2.071 6.138
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70 1IID N-myristoyltransferase 3.291 1.451 3.145

71 1ZT1 Immunoglobulin C1-set domain 0.601 1.061 3.879

72 2GTZ Immunoglobulin C1-set domain 1.561 0.851 0.701

73 2HD4 Subtilase 6.122 3.071 4.476

74 3JQ5 Phospholipase A2 8.262 2.521 6.7110

Nonapeptide

75 3DRG Bacterial extracellular proteins 2.197 3.326 3.296

76 1H24 Protein kinase 6.001 3.648 7.918

77 1MFG PDZ domain 2.211 0.964 4.888

78 1SB1 Eukaryotic proteases 7.455 1.762 8.313

79 1F7A Retroviral protease 1.755 1.575 1.451

80 3RM1 EF-hand domain pair 6.888 1.261 8.956

81 1U00 Heat shock protein 70kD 3.119 0.731 5.961

82 3BXN Immunoglobulin C1-set domain 0.901 0.543 4.152

83 2H6P Immunoglobulin C1-set domain 4.993 0.781 7.052

84 1AO7 Immunoglobulin C1-set domain 12.031 0.681 20.7110

Number (Percentage) of Successfully Docked Peptides in the 84 Protein families * 42(50%) 63(75%) 37(44%)

Preparation and Docking Process

 Peptide/modified peptides were extracted from their respective protein complexes taken from 
PDB and used as ligands. Water molecules and other co-crystallized salts/ions or molecules were 
removed from the complex and the resulting cleaned proteins were treated as receptor. Force field 
parameters (AutoDock 4 for AutoDock; SYBYL for GOLD and OPLS-2005 for Glide) and hydrogen 
atoms were added on both receptor proteins and ligands. This is a routine process in molecular 
modeling and simulation process including docking because calculations of all the energetics 
are based on these parameters. Hydrogen atoms were added because PDB files lack hydrogen 
atoms and this is required for hydrogen bond estimation in protein-ligand interactions. This was 
followed by a short energy minimization of receptor proteins and peptide ligands to remove any 
prevailing steric clashes. The binding site for docking studies was defined by generating the grid 
box around the ligands. Receptor proteins were kept rigid during docking process while ligands 
were taken to be flexible. This was done to ensure that unrestricted conformational sampling 
of ligand was performed by docking programs due to the presence of rotatable torsions. Since 
the peptide bond in the ligands is a partial double bond, this was treated as non-rotatable by 
applying constraints/restraints during docking process. As a result, the total number of rotatable 
bonds in docking set of peptidic ligands decreased to 2 to 24 (from 9 to 41) had were within the 
permissible limits of the docking programs. The default parameters in built in the programs were 
used for both docking and scoring the ligand. GlideScore was used as scoring function for Glide; 
ΔG was calculated for AutoDock and GoldScore for GOLD. All the docking studies were performed 
employing potential grid for calculations of non-covalent interactions between receptor and 
ligands.
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RESULTS & DISCUSSION
Performance of evaluated docking programs has been analyzed according to their ability 

to reproduce the crystal geometry of peptide ligands in combination with their default scoring 
functions. Performance efficiency of docking programs varied depending on the size of peptides 
(ranging from di to nonapeptide). The smaller the peptide length, the greater was the accuracy 
of docking. The number of rotatable bonds increases with the size of peptide ligands and 
affect the docking precision since ligands with higher number of rotatable bonds have greater 
conformational flexibility/sampling space. Most docking programs have the ability to handle a 
limited number of rotatable bonds. GOLD and Glide can accommodate upto 20 rotatable bonds 
competently while it is reported that AutoDock works most efficiently upto 10 rotatable bonds. 
External constraints on peptide backbone in ligands also limit its torsional degree of freedom 
during conformational sampling. The number of rotatable bonds in the ligand dataset in this 
study was between 2 to 24 depending on the peptide length. 

Top ten docked poses (potential solutions) of each peptide ligand for their respective protein 
were generated and subsequently ranked by all the three docking programs. The best pose 
among the ten was obtained by superimposing each of the ten docked poses onto the bound 
peptide conformation in the protein complex structure determined experimentally. Accuracy 
of docking result was determined by calculating the root mean squared deviation (r.m.s.d) of 
docked conformations with respect to crystal conformation of each ligand (Figure 2 & Table 1). 
The closer the predicted pose was to the bound peptide ligand in the crystal structure, lesser was 
the deviation obtained in the calculated positional r.m.s.d. The docked pose (both conformational 
and positional) with r.m.s.d of less than 2.0 Å with respect to crystal conformation was considered 
a successful docking since resolution of crystal structures present in the dataset was about 2 Å. 

Neither of the three program predicted all the poses correctly for all the peptides used in the 
study. AutoDock was able to reproduce successful docking mode in 75% of cases, followed by 
Glide (50%) and GOLD (44%) (Table 1 and Figure 3a). Glide and GOLD indicated a higher rate of 
successful docking for smaller peptides as compared to larger peptides. GOLD was able to give 
only 10% success rate for docking of octa or nonapeptide ligands. AutoDock outperformed Glide 
and GOLD remarkably for peptide ligands with 5 to 9 amino acid residues demonstrating that 
AutoDOCK has the capability to dock rotatable bonds of more than 10. Besides these comparative 
observations between the three docking programs, there were two other noteworthy observations. 
First, it has been observed that there were cases where Glide and AutoDock failed to provide the 
correct binding mode of ligands, but GOLD produced the correct pose in spite of an overall poor 
performance among these three docking programs. Similarly, though AutoDock outperformed 
Glide, there were cases where AutoDock failed but Glide provided a successful docking Table 1. 
This indicates that no single docking program is perfect for the docking of peptide ligands and the 
programs have to be chosen judiciously. Moreover, the various programs can complement each 
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other when used in combination. The second significant observation was that though docking 
programs produced the correct docked solution (binding mode), but the scoring functions were 
unable (almost 50% of the time) to rank the potential solutions suitably (Table 1 and Figure 
3b). This clearly indicates that scoring functions are lacking in comparison to docking function. 
This is probably because generating possible conformations and sampling the potential binding 
space are less complex than calculating the binding interactions between the protein and ligand. 
Chemistry of binding of ligands not only depends on the enthalpic contribution but also on 
entropic factor that is difficult to evaluate. However, identification of the best solution among 
generated poses can be improved by consensus scoring wherein different scoring functions can 
be used to score one particular docking. Rescoring the generated docked solutions/pose with 
several other scoring functions of all three classes and subsequently arriving at the consensus 
based solution might increase the reliability of obtaining the most accurate solution closest to 
that derived experimentally. This study clearly indicates that docking and scoring unless used 
judiciously can point towards an erroneous solution as the better result. Therefore, validation of 
the docking protocol with a known experimental receptor and ligand structure is essential before 
initiating virtual screening of chemical libraries. Validation will assist in the recognition of a more 
appropriate docking program and scoring function to execute the docking studies with unknown 
ligands.

Figure 2: Predicted Best (upper panel) and worst (lower panel) docking result of the three 
programs along with calculated r.m.s deviation between docked conformation (ball and stick in 
magenta) and crystal conformation of ligands (ball and stick in cyan). Crystal structure used for 
docking validation is respective PDB: 2H9T (for upper panel) and PDB: 1JW6 (for lower panel).
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Figure 3: Bar diagram representation of docking experiments with 84 peptide complex. (a) 
represents overall success (%) of docking programs individually and (b) represents correct 

ranking (%) among successful docking only.

CONCLUSION
Molecular docking is a handy computational method to predict the binding mode as well as 

binding strength of a ligand with its receptor when their 3D structures are available which if 
discreetly employed can result in significant savings of time and cost. This study on the analyses 
of the predictive power of binding mode for peptidic ligands in three docking programs reiterates 
earlier studies carried out with small organic ligands except for the significantly higher success 
rate obtained with AutoDock as compared to Glide and GOLD. This might be due to the rigid 
peptide bond present in peptide ligands that allows lesser conformational sampling and the 
ability of AutoDock to correctly dock the peptide into its respective protein molecule and score 
it efficiently. Ranking of docked poses by scoring function was observed to be inaccurate in 
about 50% cases even though docking was successful wherein the docked pose matching the 
experimental structure was ranked much lower. This clearly points out that though the correct 
pose was present among the ten poses generated by the docking programs but scoring function did 
not recognize it. Therefore, users must be skeptical about the best ranked docked pose indicated 
by scoring function. Re-ranking of the docked poses generated by docking program with several 
scoring functions of different classes followed by identification of the best pose from consensus 
scores could improve the success rate. This study also reveals that no single docking program is 
ideal and they complement each other due to incorporation and dependency of different docking 
and scoring approaches. It is also extremely relevant to validate and verify the docking programs 
to suitably reproduce the known experimental data before proceeding with docking experiments. 
This would improve the reliability of the predictive power of docking programs and ultimately 
result in higher reliability of the retrieved ligands from screened chemical libraries. However, 
notwithstanding the inherent limitations of the molecular docking programs, these programs 
are extremely useful in the drug discovery pipeline as they not only screen out probable lead 
molecules from databases but simultaneously contribute information about the protein-ligand 
interactions and their binding mode essential for de novo drug design and discovery.
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ABSTRACT
In this study, we will explore the protein interaction between Nucleotide Binding Domain 

(NBD) of human heat shock 70 kDa protein (Hsp70) and E1A 32 kDa motif (PNLVP) of human 
adenovirus serotype 5 (Ad5) in the induction of viral replication. This protein interaction may 
enhance tumor cell death rate in cancer treatment. Unfortunately, the specific protein interaction 
between NBD and PNLVP motif is still unknown. To investigate this protein interaction, you will 
need to construct three dimensional structures of NBD mutants (K71L and T204V) and study 
its physiochemical characterization using ESBRI, Cys_Recand SOPMA (Self-Optimized Prediction 
Method from Alignment) servers. After that, you will determine its stabilities by potential energy 
analysis after run the 50 ns Molecular Dynamics (MD) simulation. Then, the stable structure of 
NBD will be docked with the PNLVP motifusing Autodock version 4.2 and performed for 50 ns MD 
simulation. Finally, hydrogen bonds, Secondary Structures and Surface Accessible Solvent Area 
(SASA) analyses will be carried out to determine the most stable and best binding affinity with 
PNLVP motif among all the three protein-ligand complexes. Thus, the Hsp70 structure-based drug 
discovery may be potential as a cancer treatment.

Keywords: NBD; PNLVP motif; Molecular dynamics simulation; Docking.

Protein Interaction Study of Novel Mutants 
of Human Hsp70 and Ad5 Motif (PNLVP)
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INTRODUCTION
Worldwide, cancer is the leading cause of death [1]. However, the success rate of conventional 

methods such as surgery, chemotherapy and radiotherapy to treat breast cancer has not been 
very high. Furthermore, these treatments could cause damage to normal cells, DNA which leads to 
mutation, cardiomyopathy, liver failure and developing other types of cancer [2]. Adenoviral gene 
therapy is a new therapeutic approach [3] for cancer but recombinant adenovirus therapy alone 
failed to kill tumor cells completely. This is due to lack of expression of Coxsackie Adenovirus 
Receptor (CAR) and co-receptors (integrin αvβ3 and αvβ5 classes) in tumor cells which leads to 
poor infection of adenovirus. Thus, tumor cells hinder the replication of adenovirus. Several 
researchers indicated that hyperthermia might induce the viral replication in tumor cells [4]. 
For hyperthermia hypothesis, Heat Shock Protein (Hsp) is the main player. Based on Glotzer 
et al. (2000) study, it has been demonstrated that Hsp especially Hsp70 induces the replication 
of avian adenovirus CELO [5]. Moreover, Hsp70 induction plays a vital role in DNA replication 
of bacteriophage [6]. In this study, how the NBD and its mutants (K71L and T204V) interact 
with PNLVP motif and its stabilities were first time determined via Molecular Dynamics (MD) 
simulation and docking approaches. Thus, the model may be used for designing a more potent 
structure based drug to increase efficacy of adenovirus replication in tumor cells.

In Silico Investigations of Protein Interaction between NBD, K71L, T204V 
and PNLVP Motif

Firstly, you have to obtain the three dimensional structure of NBD from RCSB Protein Databank 
(PDB: 1HJO). Protein Databank is an information portal to 111749 biological macromolecular 
structures. Then, you will mutate the functional amino acid residues (K71L and T204V) using 
PyMol software [7-8]. PyMol is a molecular visualization system that can generate high-quality 
three dimensional images of small molecules and biological macromolecules, such as proteins. 
These residues will be chosen because they play an important role in catalytic activity and 
stabilization of structure. The conserved Lys71 is a catalytically important residue that affects 
ATP hydrolysis [9]. The proposed mechanism of ATP hydrolysis suggested that the role of 
Lys71 in accepting a proton from the hydroxide ion or water molecule involved is in-line with a 
nucleophilic attack [9-11]. The inorganic phosphate group (Pi) is coordinated by a salt bridge with 
Lys71, hydrogen bonds to Thr13 and Thr204 and interacts directly with a calcium ion. A water 
molecule mediates additional interactions with the protein’s main chain at positions 202, 203 and 
204. The Pi-binding site is on the protein face opposite the highly conserved Gly32 loop that has 
been implicated in the binding of nucleotide release factor (GrpE) to the ATPase domain of Hsp40 
(DNAK) [12]. Therefore, there are potential channels for Pi exit to the protein surface. However, 
release of the inorganic phosphate group has been implicated in the conformational transition 
of Hsp70 molecular chaperone [13]. Phospho-threonine was postulated as an intermediate of 
ATP hydrolysis. In addition, ATPase activity of Hsp70 initiates viral DNA replication. This has 
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been demonstrated for bacterial DNAJ which stimulates ATPase activity of Hsp70 to start DNA 
replication of SV40 [14]. Next, you will determine the salt bridges in NBD protein, K71L and 
T204V mutants using ESBRI program [15]. ESBRI is software available as web tool. It analyses 
the salt bridges in a whole protein structure or in a single protein chain, among complexed 
chains and those between user-specified charged residues and the rest of protein, obtained from 
experimental data or modeling studies or molecular dynamics simulations. You will calculate 
the disulphide bonds using the Cys_Rec program [16]. The program performs prediction of SS-
bonding states of cysteine and locating of disulphide bridges in proteins. Furthermore, you will 
predict the secondary structure features of NBD, K71L and T204V proteins using Self Optimized 
Prediction Method from Alignment (SOPMA) server [17]. SOPMA is an improvement of SOPM 
method. This method is based on the homologue method of Levin et al. It correctly predicts 69.5% 
of amino acids for a three-state description of the secondary structure (alpha-helix, beta-sheet 
and coil) in a whole database containing 126 chains of non-homologous (less than 25%identity) 
proteins. Validation of generated models was performed by GROMOS [18] and ANOLEA (Atomic 
Non-Local Environment Assessment) programs [19]. ANOLEA is a web server that performs 
energy calculations on a protein chain, evaluating the “Non- Local Environment” (NLE) of each 
heavy atom in the molecule. The energy of each pairwise interaction in this non-local environment 
is taken from a distance-dependent knowledge-based mean force potential that has been derived 
from a database of 147 non-redundant protein chains with a sequence identity below 25% and 
solved by X-ray crystallography with a resolution lower than 3 Å.

After that, you will simulate NBD, K71L and T204V using the Gromacs package 4.6.3 [20], 
adopting the GROMOS 53a6 force field parameter to explore and compare the protein internal 
dynamics before docked with PNLVP motif [8].In the MD simulations, the proteins will be 
simulated to examine the structural stability at a temperature of 303 K (27°C). The protein models 
will be solvated in a cubic box of explicit simple point charge (SPC) water molecules. One sodium 
ion will be added to neutralize the total charge of the system for the NBD and T204V proteins, 
while two sodium ions will be added for D364S mutant. The entire system for the NBD protein, 
K71L and T204V mutants will be minimized using 749, 1004 and 961 steps of steepest descent, 
respectively. Linear constraint (LINCS) algorithm will be carried out to constrain bond distances, 
enabling a 2 fs time step and the temperature will be controlled with a Berendsen thermostat with 
a relaxation time of 0.2 ps. Particle mesh Ewald (PME) summation will be used with a direct space 
cut-off of 1.4 Å to evaluate the electrostatic and the attractive parts of the Lennard-Jones energies 
and forces. The system simulated will be first equilibrated at a constant number of particles, 
volume, temperature and pressure for 50 ps using Periodic Boundary Conditions (PBC). All of 
the resulting trajectories will be analyzed using GROMACS utility. Potential energy analysis will 
be performed. Next, the binding sites of the protein will be identified using Q-SiteFinder [21-22]. 
Q-Site Finder is a method for prediction of ligand binding sites. To locate energetically favorable 
binding sites, it uses the interaction energy between the protein and a simple van der Waals 
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probe. Energetically favorable probe sites are clustered according to their spatial proximity. After 
that, the clusters are ranked based on the total of interaction energies for sites within each cluster.

To date, the three-dimensional model of E1A 32 kDa of human adenovirus C serotype 5 (Ad5) 
is not available in the protein database. The complete amino acid sequence of E1A 32 kDa will be 
retrieved from UniProt Knowledgebase (UniProtKB) (accession number: P03255).The UniProtKB 
is the central hub for the collection of functional information on proteins such as amino acid 
sequence, protein name or description, taxonomic data and citation information; with accurate, 
consistent and rich annotation. Basic Local Alignment Search Tool Protein (BLASTP) against the 
RCSB Protein Databank will be carried out to find a suitable template for homology modeling. 
Crystal structure of (PDB ID: 2 KJE) will be selected as a template based on maximum identity 
with high positives and lower gaps percentage. The percentage of query coverage, sequence 
identity, positive and gap between the template and target protein were 13%, 100%, 100% and 
0% respectively. It was built using Easy Modeller 2.1 software [23], the Graphical User Interface 
(GUI) of Modeller 9.10 [24], with the 2KJE protein as a template. The three-dimensional model of 
the E1A 32 kDa motif (PNLVP) will be created using the built three-dimensional model of E1A 32 
kDa as a template. The same homology modeling and 50 ns (50,000 ps) MD simulation approach 
will be performed before docking with the NBD protein, K71L and T204V mutants.

Then, NBD, K71L and T204V will be docked with PNLVP motif using Autodock Version 4.2 
program [25, 8]. Autodock is an automated procedure for predicting the interaction of ligands 
with biomacromolecular targets. In the protein, non-polar hydrogen atoms will be merged with 
carbon atoms; and total Kollman and Gasteiger charge will be added to the protein. It will make 
sure that there are no unbound atoms in the protein. Kollman and Gasteiger partial charges will be 
also assigned to the ligand and all torsions will be allowed to rotate during docking. The NBD and 
ligand will be converted from the PDB format to the PDBQT format. A grid box will be used around 
the active site to cover the entire protein binding site and allow ligands to move freely; and affinity 
maps NBD, K71L and T204V (74 × 88 × 108, 70 × 60 × 70, 60 × 70 × 95 containing total grid points 
of 727,575, 307,501, and 411,445, respectively) will be calculated by AutoGrid. One hundred 
Lamarckian Genetic Algorithm (LGA) runs with default parameter settings will be performed. 
Docking will bereclustered for 0.5, 1.0 and 2.0 tolerances. The largest docked conformations 
will be clustered at RMS of 1.0 nm and played ranked according to the native Autodock scoring 
function. The best conformation with the lowest docked energy will be chosen from the docking 
search. The interactions of complex NBD protein-ligand conformations including hydrogen bonds 
and bond lengths will be analyzed. The same docking simulation approach will be performed with 
the single point mutants of NBD (K71L and T204V). 

Then, fifty ns MD simulation of NBD, K71L and T204V-PNLVP motif complexes will be carried 
out to determine their stability throughout the simulation period. The docked complexes of the 
PNLVP motif with the NBD protein and mutants (K71L and T204V) will be used as a starting 
point for MD simulations. The GROMACS package 4.6.3 [20]; adopting the GROMOS53a6 force 
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field parameter, will beused to run MD simulations. The protein topology will be constructed by 
pdb2gmx with GROMOS53a6 force field. You will use a cubic box setting a minimal distance of 1.0 
between the protein and edge of the box, which will then be solvated using periodic boundary 
conditions and the SPC (simple point charge) water model in this study. The ligand topology 
file will be generated using the PRODRG server to include the heteroatom due to limitations 
of GROMACS to parameterize the heteroatom group in the PDB file [26]. To make the system 
neutral, you will add one sodium ion around the molecule for the NBD and T204V proteins, 
whereas two sodium ions will be added for K71L protein. The entire system for the NBD protein, 
K71L and T204V mutants will be minimized using 993, 945 and 1023 steps of steepest descent, 
respectively. After energy minimization with particle-mesh Ewald algorithm at every step, the 
system will then be equilibrated at a constant temperature (303 K), volume, number of particles 
in system and pressure (1 bar) for 50 ps. Under constant volume equilibration, the temperature 
will be maintained by Berendsen weak coupling method. Moreover, under constant pressure 
equilibration, the temperature will be controlled by Berendsen weak coupling method and the 
pressure will be maintained by Parrinello-Rahman baro-stat method. After completion of the two 
equilibration phases, production of MD simulations will be conducted for 1 ns after taking away 
the position restraints. Finally, the equilibrated structures will be subjected to MD simulations 
for 50 ns (50,000 ps) with a LINCS algorithm 2 fs time step to constrain all the bonds. The non-
bonded list will be generated using an atom-based cut-off of 10 Å. The trajectory snapshots will be 
taken for structural analysis at every pico-second. The H-bonds, secondary structures and solvent 
accessible surface area between the protein and ligand in the docked complex during the MD 
simulation will be analyzed using Gromacs analysis tools.

In this case study, ESBRI results showed that the NBD, K71L and T204V consists of 14, 19 
and 20 salt bridges respectively which were formed by arginine residues. An increase in the 
number of salt bridges contributes the stability of protein to be improved. Salt bridge plays vital 
roles in structure and function of protein. The disruption of a salt bridge reduces the protein 
stability [27]. It is also involved in allosteric regulation, recognition of molecular, oligomerization, 
flexibility, domain motions and thermo stability [28-29]. The presence of arginine in the protein 
model increases the thermo stability of a molecule by providing more electrostatic interactions 
through their guanidine group. The Cys_Rec analysis indicates the number of disulphide bonds 
which provide stability to the protein structures. Based on the Cys_Rec results, it exhibited that 
NBD, K71L and T204V contain three disulphide bonds. Both of the analyses revealed that T204V 
had the most stable structure among all the protein models. 

The secondary structure indicates whether a given amino acid lies in a helix, strand or coil. 
Alpha-helices in proteins are generated by local hydrogen bonding between C=O and N-H groups 
that are close together in the polypeptide chain. The significance of the helix is to generate the 
dipole moments, which contribute to the binding of small charged molecules to proteins. The 
individual peptide dipoles in helices contribute to making a macrodipole, with the amino-
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terminal end of the helix polarized positively and carboxy-terminal end polarized negatively. In 
helices, favorable electrostatic interactions are established between positively charged species 
and the end of the helix dipole, whereas negatively charged side chains and cations interact with 
the carboxy-terminal ends [30]. SOPMA view showed that presence of alpha-helix dominated 
among secondary structure elements followed by random coils, extended strand and beta turns at 
various positions in all the mutants of NBD. K71L consists of 44.21%, 18.68%, 8.16% and 28.95% 
for alpha-helix, extended strand, beta turn and random coil respectively. While, T204V consists 
of 44.47%, 18.95%, 6.84% and 29.74% for alpha-helix, extended strand, beta turns and random 
coil respectively. Furthermore, SOPMA analysis indicated that NBD, K71L and T204V consist of 13 
α-helixes. NBD had the tenth helix as the longest α- helix whereas ninth and eleventh helices were 
the shortest α-helix. In addition, K71L and T204V had the eleventh helix as the longest α- helix 
whereas fifth, tenth helices and twelve and thirteen helices were the shortest α-helix for K71L and 
T204V respectively.

For ANOLEA [18] and GROMOS [19] analysis, the y-axis of the plot represents the energy 
for each amino acid of the protein chain. Negative energy values (in green) represent favorable 
energy environment whereas positive values (in red) unfavorable energy environment for a given 
amino acid. ANOLEA and GROMOS results demonstrated that most of the amino acids in favorable 
energy environment (green bars) (Figure 1). Therefore, all mutant models (K71L and T204V) 
were good and reasonable. T204V had the most favorable energy compared with the NBD and 
K71L.

In the current study, three 50 ns MD simulations were performed with NBD, K71L and T204V 
before docked with PNLVP motif. The potential energy analysis revealed that NBD, K71L and 
T204V had -1689267.125, -1687322.875 and -1689947.000 kJ/mol respectively. The potential 
energy of all protein models was low. This implied that the folding of all the protein models 
refined was stable. However, the degree of stability varies depending on the energy. The potential 
energy of T204V mutant was found to be the lowest (-1689947.000 kJ/mol) among all the protein 
models. This revealed that T204V is the most stable protein model. 

The area (cubic Å) and volume (cubic Å) of predicted active sites for K71L and T204V 
were determined using Q-SiteFinder. The area for K71L and T204V were 291 and 445 cubic Å 
respectively. While the volume for K71L and T204V were 34383 and 34423 cubic Å. In addition, 
the NBD, K71L and T204V were successfully docked with PNLVP motif (Figure 2). The negative 
and lowest value of binding energy, ΔGbind (-7.73 Kcal/mol) indicated strong bonds between T204V 
and the PNLVP motif, and demonstrated that the protein was in a most favorable conformation 
when compared with the NBD (-7.31 Kcal/mol) and K71L (-7.40 Kcal/mol).

In this study, three 50 ns MD simulations were performed with NBD, K71L and T204V-PNLVP 
motif complexes. The hydrogen bond analysis indicated that the NBD, K71L and T204V-PNLVP 
motif complexes shows five, six and six intermolecular hydrogen bonds respectively, which were 
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determined along the simulation period (Figure 3). At least 1-2 intermolecular interactions were 
kept for the entire 50 ns trajectories; which inferred the stability of the NBD, K71L and T204V-
PNLVP motif complexes.

In addition, secondary structure also one of factor that influence the stability of the protein. All 
protein-ligand complexes consist of coil, turn, β-sheet, β-bridge, bend, A-helix and 3-helix. All the 
protein-ligand complexes remained relatively stable during the 50 ns MD simulations (Figure 4).

Solvent-accessible surface area (SASA) defined as the surface area of a biomolecule that is 
accessible to a solvent [31]. In 1973, Shrake and Rupley developed ‘rolling ball’ algorithm to 
calculate SASA [32]. Solvent accessibility was divided predominantly into buried and exposed 
region which describes the least accessibility and high accessibility of the amino acid residues 
to the solvent [33]. (Figure 5) shows the SASA against the simulation period for NBD, K71L and 
T204V-PNLVP motif complexes. The SASA maintained constant along the 50 ns MD simulation for 
all protein-ligand complexes. Increase or decrease in the SASA infers the changes in amino acid 
residues. Modification of SASA could affect the tertiary structure of protein. 
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Figure 1: Evaluation of (A) NBD Protein; (B) K71L; and (C) T204V Protein Models Using 
ANOLEA and GROMOS Analysis.
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Figure 2: Docking of the (A) NBD Protein; (B) K71L; and (C) T204V with the PNLVP Motif.
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Figure 3: Number of Hydrogen Bonds for the (A) NBD; (B) K71L; and (C) T204V-PNLVP Motif 
Complex Structures.

Figure 4: Secondary Structure Analysis for the (A) NBD; (B) K71L; and (C) T204V-PNLVP Motif 
Complex Models. The Structure Was Composed Of A-Helix, B-Sheet, B-Bridge And Turn.

Figure 5: Solvent Accessible Surface Area (SASA) Analysis for the (A) NBD; (B) K71L; and (C) 
T204V-PNLVP Motif Complex Structures
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CONCLUSION
The novel mutant (T204V) had a better interaction with PNLVP motif than NBD protein and 

K71L mutant. In addition, T204V-PNLVP motif complex had the most stable structure amongst 
all the protein-ligand models. Thus, further biochemical and in vivo investigation of in silico 
interpretations of this protein-ligand complex will be a new approach for designing Hsp70 
structure based drug in cancer treatment.
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ABSTRACT
Prostate cancer is the second most frequent and sixth leading cause of mortality among 

male population. Androgen receptor antagonist is one of the regimens for prostate cancer. The 
relapsed prostate cancer patients were found to express point mutations in the ligand binding 
domain of the androgen receptor. The mutations at amino acids, threonine 877 and tryptophan 
741 were frequently expressed among the androgen independent prostate cancer patients. These 
point mutations were responsible for the development of resistance against androgen receptor 
antagonist. Identification of novel androgen receptor antagonist was hampered because of the 
expression of different types of point mutation and the lack of insight into the binding mode of 
the androgen receptor antagonist with the mutated receptor. In this study, we have discussed 
the method adopted by us in designing a novel androgen receptor antagonist that could tolerate 
the point mutations. We also discussed the role of the point mutations in the development of 
resistance against androgen receptor antagonist. 

Structure Based Drug Design in Identifica-
tion of Novel Androgen Receptor Antagonist



184Software and Techniques for Bio-Molecular Modelling | www.austinpublishinggroup.com/ebooks
Copyright  Ramanathan M. This book chapter is open access distributed under the Creative Commons Attribu-
tion 4.0 International License, which allows users to download, copy and build upon published articles even for 
commercial purposes, as long as the author and publisher are properly credited. 

Keywords: Prostate cancer; Androgen receptor; Resistance; T877A; W741L

Abbreviations: Prostate Cancer (PCa); Androgen Receptor (AR); Castration Resistant 
Prostate Cancer (CRPC); Androgen Independent Prostate Cancer (AIPC); Heat Shock Protein 
(HSP); Androgen Receptor Response Elements (AREs); Steroid Receptor Co-activator (SRC); 
Transcriptional Intermediary Factor (TIF); cAMP Response Element Binding (CREB); CREB 
Binding Protein (CBP); Dihydrotestosterone (DHT); Androgen Deprivation Therapy (ADT); 
Combined Androgen Blockade (CAB); Gonadotropin Releasing Hormone (GnRH); Phosphatase 
and Tensin Homolog (PTEN); E26 Transformation Specific (ETS); Transmembrane Protease 
Serine 2 (TMPRSS2); Mirror-Image Polydactyly Gene 1 Protein (MIPOL); Threonine to Alanine 
(T877A); Threonine to Serine (T877S); Valine to Methionine (V715M); Alanine to Threonine 
(A721T); Asparagine to Aspartic Acid (N756D); Histidine to Tyrosine (H874Y); Tryptophan to 
Cysteine (W741C); Tryptophan to Leucine (W741L); Aspartic Acid to Glycine (D879G); Protein 
Data Bank (PDB); Hydrogen Bond (H-Bond).

INTRODUCTION
Prostate Cancer

The growth, development, and homeostasis of the prostate gland are under the control of 
androgens. The growth of prostate gland occurs significantly during puberty and after that, the 
androgens continue to play an important role in its function. In some men, with increasing age, 
androgen dependant proliferation of the prostate gland resumes, resulting in benign prostatic 
hyperplasia or malignant prostate cancer [1]. Most of the Prostate Cancer (PCa) relapses within 
18 to 24 months of hormonal therapy. The relapsed PCa would be either Castration Resistant 
Prostate Cancer (CRPC) or Androgen Independent Prostate Cancer (AIPC) [2]. 

The enzymes involved in the synthesis of Dihydrotestosterone (DHT) are over expressed in 
CRPC resulting in the relapse. The CRPC could be controlled by including the drugs which inhibit 
the enzymes involved in the synthesis of DHT [3]. Unlike CRPC, the AIPC doesn’t depend on 
androgens for proliferation; instead it adapts various mechanisms to neutralize the hormonal 
therapy. Clinically, AIPC is defined as the ability of the PCa cells to grow in the castrated plasma 
levels of androgen. Point mutation in the ligand binding domain of the Androgen Receptor (AR) 
is one of the major reasons behind the androgen independent proliferation of the PCa cells [4,5]. 

Androgen Receptor

Human AR is a nuclear receptor encoded by a single gene located on human X-chromosome 
at Xq11-12 region that spans more than 90kb and has 8 exons [6]. AR is a 900-920 amino acid 
protein and its variations are due to the polymorphism in the length of polyglutamine (CAG 
repeats) and polyglycine (GGN repeats) tracts in the first exon [7]. Like other nuclear receptors, 
AR is also divided into 4 regions: variable N-terminal domain or Activation Function 1 (AF-1), 
DNA binding domain, hinge region, and ligand binding domain or Activation Function 2 (AF-2). 
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The ligand binding domain of AR is coded by exons 6, 7, 8, and c-terminal part of exon 5. The 
ligand binding domain of AR has 12α helixes and a β sheet that fold to form a hydrophobic ligand 
binding pocket to which the androgens bind [8]. Helix 4, 5, and 10 are the primary contact sites 
for androgens. The binding of androgens with AR majorly involves hydrophobic interactions with 
amino acids Val746, Met742, Gln711, Met745, Leu707, Leu704, and Trp741. The hydrogen bond 
interactions also play a critical role in the specific binding of androgens to AR [9]. 

Androgen Dependant Androgen Receptor Activation 

Androgen is required for the maximum activation of the AR. The AR predominantly resides in 
cytoplasm, associated with Heat Shock Protein (HSP) and chaperons. The HSP also has an active 
role, HSP90 bind to AR and keeps it in an active conformation that is necessary for androgens to 
bind [10]. The nuclear localization signal of the AR resides within amino acids 742 to 817, which 
keeps the AR within the cytoplasm in the resting state. The nuclear localization signal is dominant 
over the nuclear export signal in the resting state [11]. 

The ligands bind to the ligand binding domain of the AR. The helix-12 of the ligand binding 
domain attains different conformation with agonist and antagonist. Androgen binding causes the 
helix-12 to lie over the ligand binding pocket, which will reveal the domain for intramolecular AF-1 
and AF-2 interaction (N/C terminal interaction). The N/C terminal interaction is specific to AR. The 
AF-2 region of the other nuclear receptors will preferentially interact with leucine rich LxxLF motifs 
in the co-activators. The AF-2 region of the AR interacts with phenylalanine rich FxxLF motifs in 
the AF-1 region. The N/C terminal interaction will lead to cascade of events like phosphorylation, 
dimerization, nuclear translocation, binding to specific androgen receptor response elements, 
co-activator recruitment, and initiation of transcription [12,13]. Class 1 family of co-activators, 
Steroid Receptor Co-activator (SRC)-1, Transcriptional Intermediary Factor-2 (TIF2), SRC-3, and 
class 2 family of co-activators, which are also known as transcriptional integrators, p300/CREB 
(cAMP Response Element Binding) binding protein, regulate the transcriptional activity of AR 
[14]. The co-activators decondense the chromatin and facilitate the binding of RNA polymerase 
for the initiation of transcriptional activity. The AR co-activators preferentially interact with the 
glutamine rich region (1053 - 1123) in the AF-1. Mutant AR that doesn’t have this glutamine 
region is inactive [13]. Antagonist binding displaces the helix-12 away from the ligand binding 
pocket and unveils the binding surface for co-repressor NcoR/SMRT interaction, which leads to 
the inhibition of the AR mediated transcriptional activity [15]. 

Androgen Independent Androgen Receptor Activation

The aim of the treatment in metastatic PCa is to reduce the plasma levels of prostate specific 
antigen and androgen. This can be established by either Androgen Deprivation Therapy (ADT) 
or Combined Androgen Blockade Therapy (CAB). ADT includes surgical or pharmacological 
castration. Surgical castration involves bilateral orchiectomy (removal of testes) and the standard 
castrate level of testosterone could be achieved within 12hr. Pharmacological castration can be 
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achieved by either Gonadotropin Releasing Hormone (GnRH) receptor agonist or GnRH receptor 
antagonist. There will be an initial rise in the testosterone concentration by using GnRH receptor 
agonist but after 2 to 4 weeks, castration levels of testosterone will be achieved. In CAB therapy, in 
addition to castration (surgical or pharmacological), AR antagonist or 5α reductase inhibitors are 
used to prevent AR activation by adrenal androgens [16,17]. 

The hormonal therapy has beneficial outcome for 18-24 months but the PCa relapses because 
of many other pathological conditions. Some of the major reasons are, over expression of 
enzymes involved in DHT synthesis and subsequent rise in intracraine androgen level [18], down 
regulation of enzymes involved in DHT catabolism [19], somatic point mutations in the ligand 
binding domain of AR [4,5], AR over expression [20], truncation of AR ligand binding domain, and 
constitutive activation of AF-1 region [21], Phosphatase and Tensin homolog (PTEN) loss [22], 
increased telomerase activity [23], mutations in p53 [24], down regulation of E-Cadherin and 
over expression of N-Cadherin which increases the heterotypic cell adhesion and metastasis [25], 
translocation and fusion of E26 Transformation Specific (ETS) genes with androgen responsive 
genes like Transmembrane Protease Serine 2 (TMPRSS2) or prostate specific Mirror-Image 
Polydactyly gene 1 protein (MIPOL1) gene [26,27]. 

The fusion between androgen responsive and ETS genes were identified in 40 to 70% of 
aggressive PCa cases [27]. The ETS family of transcriptional factors is oncogenic and controls 
the cell differentiation, cell division, metastasis, angiogenesis etc. The fusion of ETS genes with 
androgen responsive genes results in the over expression of ETS genes whenever AR is activated. 
Somatic point mutation in the ligand binding domain of AR was also frequently identified in 
drug resistance PCa patients [4,5]. The mechanism by which the AR mutates was unknown and 
many point mutations were identified among AIPC patients. The mutated AR does not depend 
on androgen for activation; instead it can be activated by other steroidal hormones like estradiol, 
progesterone, and AR antagonists. For the ETS to over-express, it requires AR activation, since it 
was fused with an AR responsive genes. The hormonal therapy decreases the plasma testosterone 
level but the mutated AR does not require androgen for activation. Consequently, the mutated 
AR could activate the expression of ETS genes without androgen. The AR mutation and ETS 
chromosomal rearrangement in conjunction could co-ordinate the AIPC progression and drug 
resistance for AR antagonist and cytotoxic drugs. A novel AR antagonist that resists the mutations 
and decreases the expression of ETS genes could well be the future for PCa treatment. 

Mutations in the Ligand Binding Domain of Androgen Receptor

The somatic point mutations can be broadly classified into two types

Mutations expressed in flutamide treated patients

The mutations, T877A (Threonine to Alanine), T877S (Threonine to Serine), V715M (Valine 
to Methionine), A721T (Alanine to Threonine), N756D (Asparagine to Aspartic acid), and H874Y 
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(Histidine to Tyrosine) were identified in AIPC patients who underwent flutamide containing 
therapy [5,28,29]. These mutations cause resistance to flutamide treatment and these mutant 
ARs are activated by flutamide.

Mutations expressed in bicalutamide treated patients

The mutations, W741C (Tryptophan to Cysteine), W741L (Tryptophan to Leucine), and 
D879G (Aspartic acid to Glycine) were identified in AIPC patients who underwent bicalutamide 
containing therapy [28,30]. These mutations were responsible for bicalutamide resistance and 
these mutant ARs are activated by bicalutamide.

In general, these mutations broaden the ligand specificity of the receptor. For example, the 
T877 amino acid mutated AR was activated by non androgens like cyproterone acetate, flutamide, 
estrogens, glucocorticoids, progesterone etc., whereas, bicalutamide antagonizes the T877 mutant 
AR. Similarly the W741 amino acid mutated AR was activated by non androgens like bicalutamide, 
estrogens, glucocorticoids, progesterone etc., whereas, flutamide antagonizes the W741 mutant 
AR [30,31,32,33,34].

COMPUTATIONAL METHODS
Docking

The ligands for the docking studies were prepared using LigPrep, Schrödinger. The ligands 
were geometrically refined and assigned appropriate protonation state at pH 7.0 ± 2.0. The energy 
minimization was carried out by OPLS 2005 force field [35]. The proteins (PDB: 2AMA, 2AX6, 
1Z95 & helix-12 truncated ARs) were prepared using protein preparation wizard in Maestro, 
Schrödinger [36]. The preprocessed protein was then used to generate the grid for docking. The 
grid was assigned by picking the ligand as the center of the grid and the grid box was generated 
by applying default parameters. The docking was carried out using GLIDE, Schrödinger. GLIDE XP 
(extra precision) method was followed for docking calculations [37].

Homology Modelling

The helix-12 truncated AR was generated using PRIME, Schrodinger [38]. The Prime suite 
was used for protein structure prediction, side chain optimization, loop prediction, active site 
refinement and energy minimization. The amino acid sequence of the ligand binding domain of 
AR was obtained from NCBI (Protein accession No: P10275.2).

The template protein was identified through blast search. The AR crystal structure, 2AMA was 
the template for wild type AR and 2OZ7 was the template for T877A mutated AR. The alignment 
between the target and template sequence was carried out by clustalW method. ClustalW could 
be used when there is a high sequence identity between the target and template. Prime allows us 
to build the homology model in two different types, either knowledge based or energy based. We 
used a knowledge based method were it uses the structure information from the template for gaps 
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and insertions. As default, the side chains were only optimized for the residues that are not from 
the template. The ligand and a water molecule (HOH-108) were retained in the final model. The 
homology model was then energy minimized (OPLS 2005) by VSGB solvation and we also refined 
the active site (5Å from the ligand) of the model.

CASE STUDY
Target Selection

It is impossible to consider all those mutations while designing an AR antagonist. The 
mutations in T877 amino acid occur frequently among the flutamide treated patients [34]. At 
present, flutamide was largely replaced with bicalutamide and there was no report of T877A/S 
mutation among bicalutamide treated patients. Mutations in W741 predominate among the 
bicalutamide treated patients [28,30]. The T877A mutated AR was expressed in LNCaP cell line. 
The LNCaP could also express the W741L/C mutation upon incubation with bicalutamide in an 
androgen depleted medium for 6-13 weeks [30]. So, the mutations are treatment specific and 
might keep on piling up depending on the antagonist. Targeting the wild type AR for drug designing 
is essential because the mutations occur during the course of treatment and as discussed above, 
the mutations are treatment specific. Understanding the mechanism by which these mutations 
convert an antagonist to agonist is essential because a novel AR antagonist should tolerate these 
types of mutations that might occur during the course of treatment. 

The crystal structure of the wild type and some of the mutated ARs are available in Protein 
Data Bank (PDB). Unfortunately, none of them are in antagonist bound conformation. Generally, 
the steroidal receptor antagonist has bulkier groups than the endogenous agonist. Antagonist 
form similar H-Bond interaction like agonist but due to their bulkier nature, they displace the 
helix-12 away from the ligand binding pocket [39,40]. The helix-12 of the ligand binding domain 
adapts closed and open conformation in response to agonist and antagonist respectively [41,42]. 
Consequently, we modelled an AR that lacks helix-12 for the structure based virtual screening. 
The truncated receptor has 671-881 amino acids instead of 671-919 amino acids. 

Docking Studies

Docking studies were carried out to evaluate the role of the point mutation in converting an 
AR antagonist to agonist. We chose 4 different types of AR: wild type (PDB: 2AMA), T877A (PDB: 
2AX6), W741L (PDB: 1Z95), and helix-12 truncated ARs (homology model). The ligands were 
DHT, testosterone, non steroidal AR antagonist flutamide, bicalutamide, and enzalutamide.

Androgen

The androgen, DHT, has binding affinity towards all the ARs but did not form H-Bond 
interaction with T877A mutated AR (Table1). The DHT and testosterone have similar type H-Bond 
interactions with wild type AR (Figure 1). The keto group of DHT and testosterone formed H-Bond 
interaction with Arg752, while the 17β hydroxyl group formed H-Bond interaction with Asn705 



189Software and Techniques for Bio-Molecular Modelling | www.austinpublishinggroup.com/ebooks
Copyright  Ramanathan M. This book chapter is open access distributed under the Creative Commons Attribu-
tion 4.0 International License, which allows users to download, copy and build upon published articles even for 
commercial purposes, as long as the author and publisher are properly credited. 

and Thr877. Testosterone did not bind with the T877A mutated AR and didn’t form any H-Bond 
interaction with W741L mutated AR. The binding energy of the androgens was less in the mutated 
ARs than the wild type AR. The DHT has a dock score of -10.80 kcal/mol with wild type AR but 
the dock score had decreased with T877A (-5.84 kcal/mol) and W741L (-6.71 kcal/mol) mutated 
ARs. Similarly the testosterone has a dock score of -10.68 kcal/mol with wild type AR but the dock 
score had decreased with T877A (no binding) and W741L (-5.95 kcal/mol) mutated ARs. This 
indicates that the mutations might affect the binding of the androgens with AR. Ligand binding 
assay also proved that the mutations could decrease the binding affinity of androgens [43]. 

Figure 1: Binding interactions of androgens.

1a: DHT forms H-Bond interaction with Arg752, Asn705 and Thr877 with wild type AR. 1b: 
Testosterone forms H-Bond interaction with Arg752, Asn705 and Thr877 with wild type AR.
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Table 1: Docking score and H-Bond interaction of androgen receptor ligands.

Ligands
Wild type T877A W741L Truncated

Dock Score1 H-Bond Dock Score H-Bond Dock Score H-Bond Dock Score H-Bond

DHT -10.80
Arg752, 
Asn705, 
Thr877

-5.84  -6.71

Arg752, 
Gln711, 
Thr877, 
HOH108

-7.26 HOH108, 
Asn705

Testosterone -10.68
Arg752, 
Asn705, 
Thr877

  -5.95  -7.17 HOH108, 
Asn705

Flutamide -7.76 Asn705, 
Thr877 -8.25

Arg752, 
Gln711, 
Asn705, 
Leu704, 

HOH108*, 
HOH213#

-7.22

Arg752, 
Gln711, 
Leu704, 
Asn705, 
HOH108

-6.22

Arg752, 
Gln711, 
Asn705, 
HOH108

Bicalutamide -2.548    -10.27

Arg752, 
Gln711, 
Leu704, 
Asn705, 
HOH108

-9.22
Arg752, 
Gln711, 
Asn705

Enzalutamide       -5.87 Arg752, 
Gln711

1Dock score in kcal/mol.
*HOH108 could form bridged H-Bond interactions with Arg752, Gln711 and Met745.
 #HOH213 could form bridged H-Bond interaction with Leu873.

Flutamide

Flutamide has binding affinity for all the AR types used in this study. Flutamide has the highest 
binding energy with T877A mutated AR (dock score = -8.25 kcal/mol). Flutamide has a dock 
score of -7.76 kcal/mol and -7.22 kcal/mol with wild and W741L mutated ARs, respectively. As 
discussed above, T877A mutation causes resistance specifically to flutamide. In wild type AR, 
the hydroxyl group of flutamide forms H-Bond interactions with Thr877 and Asn705 (Figure 2). 
In T877A mutated AR, the nitro group of flutamide formed H-Bond interactions with Gln711, 
Arg752, HOH108, and Met745. The hydroxyl group of flutamide, in the absence of Thr877 amino 
acid, formed H-Bond interaction only with Asn705. The keto group of the amide formed H-Bond 
interaction with Leu873 mediated through a water molecule (HOH213) and the amino group of 
the amide formed H-Bond interaction with Leu704. The exact mechanism by which the T877A 
mutation converts the flutamide from antagonist to agonist was unknown, but we could observe 
that the size of the ligand binding pocket in T877A was bigger than the wild type AR (Figure 
2). The binding conformation of flutamide with wild and T877A mutated ARs was also different. 
Flutamide attained a bent conformation when bound to T877A mutated AR. It is possible that the 
T877A mutation could increase the space within the ligand binding pocket to accommodate for 
larger ligands without disturbing the closing of helix-12.
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Figure 2: Binding interactions of flutamide.

2a: Flutamide forms H-Bond interaction with Thr877, Asn705 and forms ionic interaction 
with Arg752 in wild type AR. 2b: Flutamide forms H-Bond interactions with Arg752 (ionic and 
H-Bond), Gln711, Leu704, Leu873 (bridged through HOH) and Met745 (bridged through HOH) in 
T877A mutant AR.

Bicalutamide

The AR antagonist, bicalutamide doesn’t bind with T877A AR and has low binding energy with 
wild type AR (dock score = -2.54 kcal/mol). Bicalutamide is an antagonist to wild and T877A 
mutated ARs. This reveals that the bicalutamide was bulky enough so that it couldn’t bind with 
AR which has helix-12 in agonist conformation. Bicalutamide has the highest binding energy 
with W741L mutated AR (dock score = -10.27 kcal/mol) and this mutation causes resistance 
specifically to bicalutamide. In W741L mutated AR, the nitrile group of bicalutamide formed 
H-Bond interactions with Arg752, Gln711, HOH108, and Met745. The amine and hydroxyl group 
formed H-Bond interaction with Leu704 and Asn705 respectively (Figure 3a). It is obvious that 
the mutated leucine amino acid (W741L) is much smaller in size than the tryptophan amino acid, 
so we tried to compare the binding mode of bicalutamide in presence of leucine (W741L AR) 
and tryptophan (wild type AR). The binding comparison was carried out by superimposing the 
bound conformation of bicalutamide in W741L and wild type (helix-12 truncated) ARs (Figure 
3b). The truncated AR has wild type tryptophan amino acid. The B ring of bicalutamide attains a 
different conformation in the presence of tryptophan and leucine. In the presence of tryptophan, 
the B ring of bicalutamide was shifted nearer to helix-12 amino acid Ile 899, indicating a possible 
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steric clash with it. In the presence of leucine (mutated AR) the B ring of bicalutamide was well 
inside the ligand binding pocket and far from the helix-12. This indicates that the W741L mutation 
also keeps the bulky B ring of bicalutamide within the binding pocket so that it could switch the 
antagonist activity of bicalutamide into an agonist.

The unexplained mystery of the mutations T877A and W741L was that flutamide, which is 
comparatively a smaller ligand than bicalutamide, could antagonize W741L mutated AR but not 
the T877A AR. Similarly bicalutamide could antagonize T877A mutated AR but not the W741L 
mutated AR. The possible explanation to this is, the mutations might be specific to the binding 
conformation of their respective antagonist. For instance, the B ring of bicalutamide was involved 
in steric interference with helix-12. So, the W741L mutation could be deliberate to keep the B ring 
of the bicalutamide away from the helix-12. In case of flutamide, there could be some other group 
involved in the steric interference with helix-12 and hence flutamide works as an antagonist in 
W741L mutated AR. 

Figure 3: Binding mode of bicalutamide.

3a: Bicalutamide forms H-Bond interaction with Arg752, Gln711, Leu704, Met745 (bridged 
through HOH) and Asn705 in W741L mutated AR. 3b: Figure represents the superimposition of 
the wild (green colored carbon) and W741L mutated (red colored carbon) ARs and the difference 
in binding mode of bicalutamide.  Note the lack of steric clashes of bicalutamide with helix-12 in 
the mutated type, which in turn leads to resistance.
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Enzalutamide

Enzalutamide is a novel AR antagonist which was recently approved and doesn’t have the 
resistance with T877A and W741L mutated ARs. Enzalutamide doesn’t have binding affinity with 
wild, T877A and W741L, which all have helix-12 in agonist conformation. The enzalutamide has 
binding affinity only with helix-12 truncated AR (dock score = -5.87 kcal/mol). This reveals that 
enzalutamide has enough bulk that prevents it from binding with ARs that has helix-12 in agonist 
conformation. The nitrile group of enzalutamide forms H-Bond interactions with Arg752 and 
Gln711 (Figure 4). This also proves that the truncated helix-12 model is a viable way to identify 
novel AR antagonists by structure based virtual screening method. 

Figure 4: Binding interactions of enzalutamide.

Enzalutamide forms H-Bond interactions with Arg752 and Gln711 with helix-12 truncated AR.

Derivation of Structure Based Drug Design Method

The mutation increases the space within the ligand binding pocket so that it could accommodate 
for larger molecules without disturbing the helix-12 [44]. The 12th helix truncated AR model 
could then be used to screen chemical databases (ZINC, SPECS etc) for the identification of novel 
AR antagonist scaffold. The AR with helix-12 closed conformation could also be included in the 
docking process to eliminate the ligands that also have good binding score with helix-12 truncated 
AR. This step will eliminate the less bulk and highly flexible ligands so that the identified ligands 
might overcome the space increasing mutations that occur in the ligand binding pocket. This way, 
we can also differentiate between an AR agonist/partial agonist from pure antagonist.
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The novel AR antagonist should also form essential H-Bond interactions with the AR for specific 
binding. In general, the AR ligands could form H-Bond interactions with amino acids Arg752, 
G1n711, Met745, Leu704, Asn705, and Thr877. The amino acids Arg752, Gln711, and Met745 
are present deep inside the binding pocket. The amino acids Thr877 and Asn705 are present 
nearer to helix-12. An AR antagonist should preferentially form H-Bond with the deep residues, 
Arg752, Gln711, and Met745 either directly or mediated through a water molecule (bridged 
H-Bond). The H-Bond interactions with Asn705 and Thr877 might prevent the antagonist from 
abutting (steric clash) the helix-12 [45]. In the docking studies, flutamide and bicalutamide which 
exhibit resistance with the mutated AR had formed H-Bond interaction with Asn705 and Thr877 
amino acids. Enzalutamide, which doesn’t have resistance with Thr877 or W741L mutated ARs, 
formed H-Bond interaction with Arg752 and Gln711 and didn’t form H-Bond interaction with 
either Asn705 or Thr877. 

CONCLUSION
The point mutations in AR increase the binding affinity for the antagonist and decrease the 

binding affinity for agonist androgens. The mutation converts the antagonist into agonist, which 
promotes the growth of the cancer cells. Hence, it is essential to design an antagonist that will 
tolerate the point mutation that may occur during the course of the treatment. This is possible by 
designing AR antagonists that possess optimal bulk. The bulky groups should also attain optimal 
conformation in order to abut helix-12. The method described in this manuscript is capable of 
identifying new chemical entities that remain impervious to mutation in the AR ligand binding 
domain.
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INTRODUCTION
Hepatitis C Virus (HCV)

Hepatitis C virus, as it appears from its name, is a liver- affecting virus. HCV is a blood prone 
virus that was first discovered in 1989 by Choo and coworkers. The virus was termed Non-A 
Non-B hepatitis. HCV can develop liver cirrhosis and reduce the functionality of liver in patients. 
Developed hepatocellular carcinoma has been recorded in some HCV patients after long periods of 
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chronic hepatitis viral infection. Today more than 200 million people worldwide are infected with 
chronic liver diseases that lead to liver cirrhosis and development of hepatocellular carcinoma 
[1-4]. The worldwide HCV prevalence is around 3% of the population. Egypt has the highest ratio 
of chronic liver disease prevalence that affects about 14% of the population most of which (90%) 
belongs to the genotype 4a [2, 5-9].

HCV is a small virus from the Flaviviridae family. It consists of RNA as the genetic material 
enveloped by protein capsid [6]. HCV genome is approximately 9600 base pairs single stranded 
RNA that encodes a polyprotein consisting of about 3000 amino acid residues. The polyprotein 
then cleaved by both viral and host cell proteases to 10 proteins (Figure 1) some of which are 
part of the structure of the virus [core, E1, E2 and p7], which are called structural proteins. Others 
have specific functions in viral replication [NS2, NS3, NS4A, NS4B, NS5A and NS5B]. These are 
termed Non-Structural (NS) proteins [2,3,6,10].

HCV genome is characterized by high mutation rate. About six main genotypes are present 
to date (1, 2, 3, 4, 5 and 6). The nucleotide sequence differs by 31% to 34% among the different 
genotypes. Genotypes are further classified into subtypes; more than 100 subtypes are present 
to date (1a, 1b, 2a, 2b etc…). The sequence similarity among different HCV subtypes in each 
individual genotype is about 90%. HCV circulates in infected patient’s blood in the form of a 
number of different but closely related variants called quasi-species [11].

Figure 1: HCV polyprotein before and after cleavage by viral and host cell proteases.
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HCV RNA-Dependent RNA Polymerase (RdRp)

HCV RNA dependent RNA polymerase (RdRp) is a part of the NS5B protein. It plays an 
important role in viral replication cycle. NS5B represents an excellent target for selective 
HCV inhibitors because its biochemical activity is limited to the RNA viruses with no effect on 
mammalian cells [12]. 

NS5B (Figure 2) is 68 KDa tail-anchored protein with an alpha helical trans-membrane domain 
consisting of 21C-terminal amino acids [13]. The domain architecture of NS5B RdRp is the same 
as other polymerases consisting of thumb, fingers and palm domains resembling the right hand 
[14,15]. The palm domain contains two consecutive metal binding aspartates that form the active 
site motif GDD (G88, D89 and D90) and carry out the nucleotidyl transfer reaction. Fingers and 
thumb domains regulate nucleic acid binding. Beside the active site, several other pockets that act 
as allosteric binding sites [12,15,16].

Due to the high mutation rate characterizing HCV genome, the production of efficient DAAs 
that inhibit NS5B RdRp protein remains challenging. To resolve this problem and improve the 
viral response a combination therapy was suggested by many authors with different drugs having 
different binding modes of action [4, 17].

Figure 2:  Structure of the protein NS5B polymerase from PDB file 4AEP downloaded from the 
Protein Data Bank. The active site motif GDD of the RdRp part is represented by green Van Der 
Waal (VDW) spheres. The figure was generated using Visulaising Molecular Dynamics (VMD) 

software.

Fingers Thumb

Palm



200Software and Techniques for Bio-Molecular Modelling | www.austinpublishinggroup.com/ebooks
Copyright  Elfiky AA. This book chapter is open access distributed under the Creative Commons Attribution 4.0 
International License, which allows users to download, copy and build upon published articles even for commercial 
purposes, as long as the author and publisher are properly credited. 

HCV Treatment

Rational drug therapy

The rational drug therapy for HCV until five years ago was only the double therapy. It is a 
combination of PEG related interferon alpha and the wide range antiviral Ribavirin (PEG-IFN/
RBV). This regimen gave varying Sustained Virologic Response (SVR) rates that depend on the 
viral genotype. SVR is up to 80% in genotypes 2 and 3, 60-70% for genotype 4 but only 40-50% in 
genotype 1 [9,18]. Unfortunately, the combination therapy is expensive and not tolerated by some 
patients. Interferon develops diversities of side effects that may lead to stopping the medication 
in some cases [6,10,19].

Due to the above-mentioned reasons, researchers started to direct their attention to interferon-
free regimens. They worked on drugs that directly act on specific proteins that are important in 
viral replication. These types of drugs are called Direct Acting Antivirals (DAAs).

Direct Acting Antivirals (DAAs)

The use of Direct Acting Antiviral (DAA) drugs that act on specific viral and/or host cell proteins 
gives good results in many cases. In the year, 2011, the FDA approved two drugs for the treatment 
of HCV genotype 1 in combination with interferon alpha and Ribavirin. The two approved drugs 
(Telaprevir and Boceprevir) are DAAs that target NS3 serine protease domain of the NS3 protein 
of HCV [20]. Sofosbuvir is a nucleotide NS5B polymerase inhibitor that was approved by FDA in 
December 2013 as a free drug or in combination with interferon against genotype 1. 

For almost all therapies that were developed to act on the viral proteins, drug resistance 
occurred due to the high mutation rate induced by the nature of HCV (a single stranded RNA 
virus). One can mix a cocktail of DAAs to overcome resistance, putting into consideration the 
toxicity of the mixed drugs [21].

There are two types of DAAs against HCV NS5B polymerase. The first type is called Nucleotide 
Inhibitors (NIs) in which the nucleotide-like analogue is introduced into HCV NS5B polymerase 
active site to stop the polymerization process. NIs are classified into two subtypes; sugar modified 
nucleotide analogues and nitrogenous base modified analogous. Some drugs that act on NS5B 
polymerase are not related to the structure of nucleotides. These drugs called Non-Nucleotide 
Inhibitors (NNIs). This is the second type of DAAs against HCV NS5B polymerase.

NIs are successful candidates in the treatment of HIV and herpes viruses. NIs compete with the 
nucleotides (natural substrate: Adenine, Guanine, Cytosine and Uracil) on HCV polymerase active 
site. They are, generally, prodrugs that are activated by phosphorylation inside the host cell. Once 
an NI becomes attached to the polymerase active site it stops the polymerization process, hence 
they are termed chain terminator inhibitors. They can also interfere with the cellular proliferative 
machinery [12, 22]. IDX-184, R7128 and Sofosbuvir (Figure 3) are examples of NIs against HCV. 
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These drugs are now either under clinical trials phases II (IDX-184 and R7128) or already 
approved (Sofosbuvir), [4,12,21,23-25]. These DAAs give good results in terms of increasing the 
SVR rate when administered in combination with rational regimen of double therapy [10, 26].

Figure 3: The structures of some nucleotide inhibitors, Sofosbuvir (PSI-7977), IDX-184 and 
R7128.

Molecular Modeling

Molecular modeling can be simply considered as a range of computerized techniques. These 
are based on the basic laws of physics and experimental data which can be used either to analyze 
molecules (number and types of atoms, bond, bond lengths, angles and dihedral angles) or 
molecular systems (nucleophilicity, electrophilicity and electrostatic potentials). Moreover,

 it can predict molecular and biological properties which are useful in the understanding of 
structure-activity relationship and in rational drug design [27]. 

As concluded in the scheme below, molecular modeling consists of three stages: The model 
selection, with which the calculations will be carried out. This step is governed by the complexity of 
the system and the computational time requirement. One may make calculations using Molecular 
Mechanics (MM), Quantum Mechanics (QM) or hybrid MM/QM. If working on small molecules or 
peptides, one may use QM or semi-empirical QM [28]. If working on large molecules (like proteins 
or DNA), one should use an MM model. If working on the active site of large molecules, one may 
use the hybrid MM/QM model. 

The selection of the calculation type is the second stage. Different calculations are possible 
depending on the goal of the experiment. Among the very large number of available calculations 
are; geometry optimization, vibrational spectra calculation, NMR spectra calculation and single 
point energy calculations.

The final and most important stage is the analysis of results. This stage will provide answers 
about the problem that might not be solvable by experimental work. One should perform extensive 
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analysis of the results in order to reach valuable conclusions about the investigated system. To get 
better results one should select the most appropriate model for calculations. This depends on the 
complexity of system and the available computational power [29].

Molecular Modeling scheme

The discovery of new drugs is the main target for pharmacologists and medicinal chemists. 
Drugs are chemical substances that can be used both for treatment and for diagnosis of a disease. 
In addition; it can prevent the development of disease in humans, animals and plants. The 
function of drugs is to inhibit or to enhance certain physiological functions. The biological and 
pharmacological effects of drugs are either helpful or harmful for living organisms. Drugs interact 
with specific targets in living organisms such as enzymes, receptors, nucleic acids, channels or other 
biological macromolecules [30]. The discovery of new pharmacological compounds requires the 
design and synthesis of drug, studying its physicochemical and biophysical properties in addition 
to its pharmaceutical functions. These studies improve drug safety and biological activity while 
reducing adverse side effects. The development of drugs has several strategies. These strategies 
involve either a change in the shape of the drug in order to fit into its active site receptor or a 
change in its pharmaceutical properties, which include Absorption, Distribution, Metabolism and 
Excretion (ADME). These strategies require the synthesis of large number of compounds and 
substitutions that consume time and money. 

Quantitative Structure-Activity Relationship (QSAR) is a technique that quantifies the 
relationship between a physicochemical property of a drug and its biological activity. QSAR is useful 
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for optimizing the groups that modulate the potency of a drug. It is based on the determination 
of mathematical equations that express the biological activities in terms of molecular descriptors 
such as the logarithm of partition coefficient (log P), steric constituent constant (Es) and molar 
refractivity. QSAR also may make use of structural indexes obtained by quantum mechanics such 
as Highest Occupied Molecular Orbital (HOMO) energies, Lowest Unoccupied Molecular Orbital 
(LUMO) energies, total dipole moments, charge, molecular polarizability, electronegativity and 
frontier orbital energies [25,27,30-33].   

QSAR descriptors are not universal and depend on the nature of chemical structures or process 
involved. Once a correlation between structure and activity is found for a compound or group of 
compounds, the computer can be used to make screening in order to select structures with the 
desired properties. It is possible to select the most promising compounds to synthesize and test in 
the laboratory. A combination of QSAR and molecular modeling approach is the key for success in 
Computer Aided Drug Design (CADD) and to understand drug-receptor interactions [33]. 

CASE STUDY DESCRIPTION
In the following section, the use of molecular modeling combined with QSAR to study the 

binding of different drugs (Nucleotide Inhibitors) to NS5b RdRp of HCV from different genotypes 
will extensively illustrated. Moreover, a comparison between the binding energies of these drugs 
and native nucleotides using the same technique is also presented.

Steps of Computer Aided Drug Design (CADD)

Protein sequence analysis

Sequence comparison and analysis is important in rational drug design. As shown in previous 
work [25,33] the amino acid sequence around the active site moiety GDD and the surrounding 
environment is conserved (5 Ȧ region around the GDD motif). Since the structure of the active 
site of polymerase is conserved among different HCV genotypes, it would be possible to target the 
active site in different genotypes with the same inhibitor. However, some studies on NS5B RdRp 
with NIs show different results for different genotypes. This may be due to the effect of mutations 
on the cavity at the active site. These mutations don’t occur in the active site environment but 
aside from it and probably lead to drug disability to inhibit the protein or at least lead to decreased 
inhibition [4,10,34].

There are different methods that can be used for sequence comparison. For example, using 
Visualizing Molecular Dynamics (VMD) software, sequence alignments may be carried out for 
the sequences with the help of Clustal W program in multiseq extension or using the web based 
service of CLUSTALW 2 [25, 33].

Homology modeling

Homology modeling, also called comparative protein modeling or knowledge-based 
modeling, is the process by which a 3-dimentional model of a target sequence being built based 
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on a homologue of experimentally solved structure (experimental processes include X-ray 
crystallography, solution Nuclear Magnetic Resonance [NMR] and Electron Microscopy [EM]). 
Homology modeling relies on the identification of one or more known protein structures likely to 
resemble the structure of the query sequence and on the production of an alignment that maps 
residues in the query sequence to residues in the template sequence [35]. The sequence alignment 
and template structure are then used to produce a structural model of the target [36].

A target (or query) sequence is the primary sequence of a protein whose structure has to be 
modeled. When first loaded in the workspace, it is provisionally drawn as a long helix. A template 
structure, or simply a template, is an experimentally solved structure used as a scaffold to model 
the structure of the target sequence. Template sequence is the primary sequence of a template. 
The quality of the homology model is dependent on the quality of the sequence alignment and 
template structure. The approach can be complicated by the presence of alignment gaps that 
indicate a structural region present in the target but not in the template, and by structure gaps 
in the template that arise from poor resolution in the experimental procedure (usually X-ray 
crystallography) used to solve the structure. 

After modeling, one should check the models for errors using different mechanisms including 
3D structure related properties (such as bond angles, length, Ramachandran plots). This process 
is called “Protein Model Validation”. On the web, there are several servers built for helping 
researchers to check their structures for errors. Structural Analysis and Verification Server 
(SAVES) is one of them, in which the protein three-dimensional structure (PDB file) is uploaded 
and checked by built-in programs which check the PDB file for errors where each program produces 
its own result. Based on the given results one can judge the validity of his own protein model. 
For example, SAVES server contains the program PROCHECK which check the stereo-chemical 
parameters such as Ramachandran plots, main and side chain parameters, residue properties, 
G-factor dihedrals, main chain bond angle, and bond length[37]. The programVERIFY-3D checks 
the residual environment [38]. ERRAT program generates overall quality factor of the protein 
model [39]. PROVE program checks atomic volumes and calculates the atomic Z-score[40]. The 
program WHATCHECK gives a report for almost all parameters of the uploaded protein structure 
PDB file [41].

Drug activation

Some drugs are converted to its active form inside target cells. In this study, phosphorylation 
of Sofosbuvir, IDX-184, R7128 and Ribavirin was performed in silico to become in its active tri-
phosphate form [25, 33]. After in silico phosphorylation, the activated Nucleotide Inhibitors 
(NIs) are energy minimized using mechanical chemistry calculation method (MM3) followed 
by the semi-empirical quantum mechanics calculation method (PM3). The use of a low level 
method (classical mechanical method (MM3)) for an initial energy minimization reduces the 
time of calculation needed by the higher level method (PM3) for energy minimization. Infrared 
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vibrational spectrum is then calculated at PM3 level in order to ensure that an active form of the 
drug is real (no negative vibrations). After optimization, infrared vibrational spectrum calculation 
is performed in order to ensure the structures being real.

QSAR descriptors calculation

In some previous studies, Quantitative Structure Activity Relationship (QSAR) descriptors are 
calculated for selected DAA drugs (Sofosbuvir, IDX-184 and R7128) and Ribavirin in addition 
to their parent nucleotide tri-phosphates (Guanine, Cytosine and Uracil) for comparison [25, 
33]. QSAR calculations are carried out at PM3 level using computational chemistry integrated 
platform software SCIGRESS [42]. The calculated descriptors are: dipole moment, the logarithm 
of partition coefficient (Log P), electron affinity, molar refractivity, ionization potential, solvent 
accessible surface area, volume, total energy, heat of formation, Highest Occupied Molecular 
Orbitals (HOMO), Lowest Unoccupied Molecular Orbitals (LUMO) and frontier energy gap (ΔE = 
LUMO - HOMO).

Drug-protein interaction

The final and very important step in rational drug design is the study of drug-protein 
interaction. The drug in its active form may form covalent or non-covalent bonds with the active 
site amino acid or the amino acid around the active site cavity. Some hydrophobic or Van der 
Walls interactions may stabilize the drug in the protein cavity. The interaction potency between 
the drug and the protein is the factor that one can depend on when comparing different drugs 
against specific protein.

One example of drug/protein interaction is the interaction between IDX-184 and NS5B protein 
model (Figure 4). A hydrogen bond is formed between the drug in its active form (Tri-phosphate) 
and the amino acid S59 of the polymerase active site environment. In addition, H-bonds are 
formed between active site environment’s amino acids. Another force of interaction arises from 
weak interactions formed between the two Mg+2 ions and both of the triphosphates’ oxygen and 
the two aspartic acids (active site amino acids) oxygen atoms.
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Figure 4: The interaction between IDX-184 and the active site of NS5b RdRp D89 and D90 
showing the formation of H-bond between the drug and S59 in addition to the coordination 

bonds between the two Mg+2 and the oxygen atoms of both D89, D90 of the protein and 
Phosphate group in the drug.

CONCLUSION
Molecular modeling represents a promising technique that had a very high momentum of 

development in the last decade. This progress was in fact, related to the rapid improvement in the 
hardware of new computers in the market. In addition, software improvement provided a second 
source making molecular modeling the best choice in different areas of research. 

In presented case study, Computer Aided Drug Design CADD was utilized in order to provide 
an insight about the binding of Sofosbuvir, IDX-184, R7128 and Ribavirin to HCV NS5b active 
site. The results showed diversity among different drugs and different genotypes. These findings 
emerged from both QSAR calculated parameters and interaction energies calculated for the 
binding of the drugs to the active site of the polymerase. These results were in agreement with the 
experimental data obtained from patients infected by different genotypes of HCV, where different 
responses to the same drug were recorded.

CADD results implied that IDX-184 represented a promising drug against all studied 
genotypes. Also, all of the studied drugs (Sofosbuvir, IDX-184 and R7128) were able to interact 
more effectively with viral polymerase than ribavirin of the dual therapy. Hence, these drugs were 
better than ribavirin in competing the nucleotides for binding to HCV polymerase.
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GLOSSARY
Active site environment: Describes a 5Å region around the active site motif GDD. This active 

site environment complex includes 12 amino acids (including GDD motif), two Mg+2 ions and one 
of the Nucleotides, NIs or ribavirin.

Frontier energy gap: The difference in energy between HOMO and LUMO. it is high in more 
stable structures.

Heat of formation: The change in enthalpy accompanying the formation of one mole of a 
compound from its elements in their natural and stable states, under standard condition of one 
atmosphere at a given temperature. 

Ionization potential: It is the energy required to ionize an atom. High values of the ionization 
potential means a more stable structure.

Sustained Virologic Response: It is defined as aviremia (Lack of virus in the blood plasma) 
24 weeks after completion of antiviral therapy for chronic hepatitis C virus infection.
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 INTRODUCTION
Over the past 25 years, the discovery and development of novel lead drugs is conducted by 

rational drug design [1]. Rational drug design process is time consuming, expensive, and requires 
consideration of many aspects [2]. Computational techniques are applied in the rational drug 
design for the purpose of discovering molecules that can be very rapidly developed into an 
effective treatment [3].

The use of computational techniques has been shown to increase the efficiency of drug 
discovery and development [4, 5]. Computer-aided molecular design (CAMD, also called as in 
silico or Computer-Aided Drug Design CADD) is being applied to expedite and assist hit-to-lead 
selection, hit identification, optimize the Absorption, Distribution, Metabolism, Excretion (ADME) 
and profile toxicity [6].

Application of Structure and Ligand-Based Drug 
Design for Finding Lead Compounds from Natural 

Product Source: Case of Influenza Targeted
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As shown Figure 1. CADD can be divided into; (1) ligand based design, (2) structure based 
design, and (3) de novo design. Various methods of ligand-based drug design (LBDD) can be 
applied, if protein structures are unknown, such as the methods of Quantitative Structure Activity 
Relationship (QSAR) and pharmacophore modeling [4, 6]. The knowledge of ligand properties, 
such as pharmacological effect and bioactivity, is important in LBDD.

Figure 1:  Stages of Drug Discovery and Development.

Computational approaches, including QSAR, pharmacophore modelling, and database mining, 
can be applied to a ligand set with known activity [4]. Retrieval of 3D structures from database 
is similar to a 2D similarity searching. However, 3D similarity searching reduce the problem 
of conformational flexibility [7]. The success stories of LBDD approaches in facilitating drug 
discovery have been reported by Kubinyi [8, 9]. 

Table 1: CADD Methods Resume.

Known Ligands Unknown Ligand

Known Target Structure-based drug design (SBDD)
Protein-ligand docking, molecular dynamics, homology modeling De novo design

Unknown Target

Ligand-based drug design (LBDD)
One or more ligands

1. Similarity searching
2. Pharmacophore searching
Many ligands (more than 20)

1. Quantitative Structure-Activity Relationships

CADD of no use
Need experimental data of some sort

Can apply ADMET filters

In SBDD,  structural knowledge obtained from ligand–protein complexes (X-ray crystallography 
or NMR data) can primarily facilitate the design of focused structure-based libraries by optimizing 
ligand–receptor complementary interactions, in an effort to increase potency and specificity 
[10,11]. The applications of SBDD include the discovery of potent and selective HIV protease 
inhibitors [12,13], thrombin inhibitors [14,15], breast cancer [16] and neuraminidase inhibitors 
[17]. Recent example of this method, discovery of peramivir (BCX-1812), which was based on the 
structure based method utilizing the crystallography structure of a highly conserved NA active 
site and its substrate interactions[18,19].

On the other hand, De novo method is practically used when the ligand is unknown, with a 
known target. De novo ligand design will be able to test many structures in a short period of time 
and arrange them into a ranked list based on an accurate prediction of binding free energies since 
the latter reflects actual binding propensities [20-22].
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One of CADD tools, which are the most popular in the last 10 years, is virtual screening [23]. 
Both LBDD and SBDD approaches are powerful technologies which can be supplemented by 
virtual screening (VS) for lead identification and optimization [4]. However, the structure-based 
and ligand-based techniques can be performed in the early stages of drug discovery process and 
help in discovery of lead compounds (as shown in Figure 2) making an initial basis for further 
modifications to improve pharmacokinetics, solubility, selectivity, potency or stability. Structure 
and Ligand-based techniques can be applied to explore the mechnaisms of ligands selectivity 
against their targets. 

In this study, we demonstrate application of the structure-based drug design methods for 
investigation of neuraminidase as drug target.

NEURAMINIDASE AS A TARGET FOR DRUG DISCOVERY USING 
SBDD TECHNIQUE
Neuraminidase

Neuraminidase (NA) is responsible  for cleaving sialic acid in terminal receptors, releasing 
new viruses from infected cells. NAs are found particularly in diverse virus families and bacteria, 
as well as in protozoa, some invertebrates and mammalian [24, 25]. They have differences in 
binding affinity and substrate preference; however they have conserved domains and structural 
similarities [24]. NA plays a vital role in influenza virus

replication, and has a conserved active site residues, thus inhibition of NA can delay the release 
of virus progeny from infected cells. This will reduce the virus population and will give time for 
the immunity of the host cell in the body to eliminate the virus [26]. NA hydrolyzes α-2,3-sialic 
acid from sugar (galactose), and it is also involved in the hydrolysis at α-2,6-sialic acid-galactocyl,. 
There are nine subtypes of neuraminidase from influenza A viruses (N1-N9) [27]. Type A influenza 
neuraminidases form two genetically distinct groups: group 1 consists of subtypes N1, N4, N5 and 
N8, while group-2 consists of N2, N3, N6, N7, and N9. Group-1 has a 150-loop cavity adjacent 
to the active site that serves as a gateway for the ligand to interact with NA [28]. The cavity is 
suitable for the active site in the development of new anti-influenza drugs [29].

The active site of NA has highly conserved active residues which are very specific to the sialic 
acid as the natural ligand. NA active site contains 18 residues (6 basic, 7 acidic, 3 polar, and 2 
hydrophobic) [30]. Based on the chemical bonding and interaction, NA active site can be divided 
into sub-pockets (Figure 1.2). Subsite 1 (S1) consists of triarginyl cluster (Arg118, Arg292, and 
Arg371), which has a pocket of positive charge; thus it will interact with the carboxylic groups of 
the ligand [31]. S1 is called basic pocket which is important for designing lead compound for NA 
inhibitors [32]. S2 subsite is negatively charged and is composed of Glu 119 and Glu 227, and it 
interacts with the amine group on the acetamido of sialic acid. S3 consists of Trp178 and Ileu222 
and has hydrophobic properties. The two residues are adjacent to Arg152 that binds to the water 
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molecules. S4 consists of Ala246 and Arg224, which are adjacent to the Ileu222 pocket and it 
is unoccupied by the functional groups of sialic acid [33]. The pocket accommodates a methyl 
group from SA and Neu5Ac2en (DANA) [32]. S4 is a new target for the development of new NA 
inhibitors. S5 has a unique pocket with mixed polarity environment depending on the incoming 
ligand. This site consists of carboxylate of Glu276 (trans-conformation) and methyl of Ala 246. 
During enzymatic reaction, Glu276 and Glu277 form hydrogen bonds with Tyr406 to stabilize the 
oxocarbonium ion with sialic acid. Glu276 interacts with O8-O9 in glycerol (SA) [34]. In addition 
to these amino acid residues, Asp151 has also an important role but not defined on the S1-S5 
sites. This carboxylic residue does not make direct contact with DANA, but is believed to play 
an important role in catalysis by polarizing the bond α-2,3-sialic acid-glycosidic. Asp115 with 
Glu119 and Glu227 are also involved in sialic acid hydrolysis through the involvement of water 
molecules [34].

 Figure 2: The interaction of DANA inside a neuraminidase active site in (a) 2D and (b) 3D 
representative (taken from PDB ID: 1NNB) (from Stoll et al., 2003).

Structure-Based Drug Design (SBDD)

As mentioned above, SBDD is a powerful technique in the process of discovery and development 
of drug. SBDD approach is useful for evaluating the complementarities and predicting the 
possibility of binding modes and affinities between ligands and their macromolecular receptors 
[4]. The availability of X-ray crystal structures of the influenza virus NA with and without a ligand 
such as α-Neu5Ac and Neu5Ac2en [35-37] provides the key in designing NA inhibitors. Edmond 
and co-workers [38] together with Meindle’s group [39] started a random screening method in 
drug discovery. This method is based on guided activity that focused on trial and error, but the 
method doesn’t work as the compounds easily produce drug resistance. Goodford [40] calculated 
the interaction energy between ligand and the target using computational methods and found 
that target – ligand interaction can be predicted by software programs such as GRID [40]. The 
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GRID program has been used by on Itztein et al. [31] to design NA inhibitors in SBDD approach. 
Potent interaction between sialic acid (SA) and NA in the complex crystal structure is the basis 
for design of NA inhibitors [41].

 It is possible to design highly potent NA inhibitors with SBDD, as has been shown by the 
discovery of zanamivir (ZANA) [34]. Using GRID [40,42] the active site of NA is explored for the 
ability to accommodate a variety of groups such as carboxylates, amine, methyl and phosphate 
functional groups to get a potent and effective inhibiting NA [31]. Several compounds have been 
successfully modified and optimized based on charge and shape of the character of active sites 
through SBDD methods, such as ZANA [31] and OTV [43]. Based on the results of computational 
chemistry, von Itztein et al. [31] replaced the hydroxyl group at C-4 from the Neu5Ac2en with 
amine base groups into 4-amino-4-deoxy-Neu5Ac2en (Figure 3(a)) and further replaced with a 
guanidino group (ZANA) (Figure 3(b)). Based on these data, C-4 group on the guanidino of ZANA 
successfully interact with carboxylic groups on the site active residues (Glu119 and Glu227) 
which leads to better inhibition of NA of Neu5Ac2en. The importance of NA in the history of the 
pathogenesis of influenza virus infection and the properties of the active side residue which is 
highly conserved lead to a concrete reason to design of small molecule, which is selective and 
effective towards NA.

The glycerol moieties of ZANA interact with the active site of NA in the way similar to DANA. 
The in silico results show that the replacement of glycerol with a more hydrophobic group makes 
the ligand more stable in solid form (oral administration), whereas ZANA is stable only in the form 
of solution (intravenous). In addition, QSAR studies have shown that the replacement of glycerol 
with considerations chain length, branches, and stereochemistry of alkyl groups also improve the 
inhibition of NA. This is the basis in designing of OTV (GS4071) (Figure 4(a)). Kim et al. performed 
optimization by the replacement of glycerol with 3-pentyl ether but maintaining acetamido and 
amino groups in the GS 4071[43]. In this discovery, GS4104 (Figure 4(b)) has been developed for 
the purpose of drug formulations, which is the ester derivative of OTV [44-46].
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 Figure 3: The structures of (a) 4-amino-4-deoxy-Neu5Ac2en and (b) zanamivir.

Based on the success in discovery of ZANA [31] and OTV [44], SBDD has played an important 
role in the discovery of other NA inhibitors. However, the constant threat of pandemic avian 
influenza [47] and the emergence of strains resistant to OTV (Tamiflu) make the development of 
new effective NA inhibitors important.

Figure 4: (A) oseltamivir carboxylate (GS 4071) (B) oseltamivir (GS 4104).

Molecular docking is one of the useful SBDD methods. The availability of three-dimensional 
structure of NA has played an important role in SBDD methods to discover new inhibitors of 
neuraminidase. Varghese et al. (1983) determined the first three-dimensional structure of NA 
(N2 subtype structure) using X-ray crystallography with 2.9 Å resolution [36].They also solved 
the first complex structure of NA-sialic acid in 1992 (PDB id; 2bat) [37]. 2HU4 (neuraminidase 
from H5N1) from Protein Data Bank (PDB) was used in molecular docking simulation with 
Autodock 3.5. In this study were successfully screened 3000 natural product compounds. From 
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five plants, 12 compounds were isolated which show neuraminidase inhibiting activity, including 
two compounds with IC 50 values less than 92 µM [48]. Whereas, 3B7E (neuraminidase from 
H1N1) and 3NSS (neuraminidase from H5N1 mutant) were employed in molecular docking 
simulation (Autodock 4.2) to screen out 113 natural product compounds and the some natural 
compounds screened were assayed by MUNANA assay to prove the in silico concept as mention 
above. Catechin, epicatechin, galocatechin and gallic acid were tested against N1 of neuraminidase 
(C. perpringens) as shown in Figure 6; the IC50 value of catechin was 93.92 μM. Epicatechin (18), 
galocatechin (19), and gallic acid (20) had 137.1 µM, 165.1 µM, and 205.7 µM, respectively [49].

LIGAND-BASED DRUG DESIGN: DISCOVERY OF NEURAMINIDASE 
INHIBITORS

Recently, sialic acid and Neu5Ac2en derivatives have been synthesized and evaluated for 
their influenza virus sialidase inhibitory activity. At least 268 derivatives of Neu5Ac2en have 
been synthesized up to date (www.bindingDB.org) [50, 51]. Molecular alignments of Neu5Ac2en 
derivatives with known activity (IC50 or Ki) can be employed as basic data in Ligand-Based Drug 
Design (LBDD). The crucial component in the ligand-based approaches is the need to superimpose, 
or align, a series of active ligands, ideally to mimic the way in which they would be overlaid in the 
binding site. Such superimpositions form the basis for techniques such as 3D database searching, 
3D quantitative structure–activity relationship (QSAR), and receptor modelling [52].

Every active ligand will have the key pharmacophores that influence the biological activity. 
For example, Neu5Ac2en ligand has carboxylic groups acting as the negative ionizable feature and 
this feature contributesto charge-charge binding interaction of the ligand and the Arginine triad 
(371, 292, and 118) [34].

Pharmacophore features are generated from molecular alignments of ligand analogues based 
on steric, electronic, function-determining points for an optimal interaction with the relevant 
pharmacological target. There are many ways to generate pharmacophores. In one approach, 3D 
and predictive pharmacophores can be created automatically from the most active ligand set as 
the basic information [53]. For example, (refer to chemical structure in Figure 1.7), sialic acid 
(Figure 1.7(b)) is the natural ligand that is the least active towards neuraminidase (NA) (IC50 
1000 mM). The compound has the least capability to inhibit NA, but it has good    selectivity, 
whereas DANA which is modified from sialic acid by removing hydroxyl group at C2 (Figure 5b), 
was more active to inhibit NA (IC50 1 mM). Hydroxyl group at C4 is replaced with guanidine in 
ZANA (Figure 1.7(b)) making the compound more active than DANA against NA. DANA and ZANA, 
produced three feature; negative ionisable (in carboxylic acid), hydrogen bond donor (in OH or 
NH2 at C4 and C6), and hydrogen bond acceptor (in acetonimide at C5). Hiphop in CATALYST 
generates common features and produce three features as discussed above and determine inter 
features distance. In recent time, hydrophobic groups are attached to Neu5Ac2en at C6 to replace 
glycerol in DANA or ZANA that is exemplified by OTV in Figure 5 (c).
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Several successful studies in discovery of new inhibitors of neuraminidase using LBDD have 
been reported where medicinal chemists utilised the pharmacophore models and QSAR [54-57]. 
Zhang et al.[57] generated the best hypogen model of pharmacophore from 22 NA inhibitors 
structures, consisting of 2 Hydrogen Bond Donors (HBD), hydrophobic (HY), negative ionizable, 
and positive ionizable features. In addition, five best pharmacophore models that emerged in the 
optimal QSAR equations show the existence of several different ligand-NA binding modes in the 
NA binding pocket [56].

Figure 5: Common pharmacophore features of sialic acid derivatives (a) sialic acid structure. (b) 
zanamivir structure (c) oseltamivir.

Nevertheless, the resistance of influenza virus to existing NA inhibitors [58] suggested 
medicinal chemists an idea to attach some functional groups in sialic acid derivatives, that 
required development of the models with the last pharmacophore features. For example, Zhang 
et al.[57] added one hydrophobic feature and one hydrogen bond acceptor in their models, while 
Hammad et al. [56] attached two hydrophobic feature and one hydrogen bond donor in one of 
their five models. Hammad et al. (2009) used 181 NA inhibitors in their study.
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  (a)          (b)    (c)

Figure 6: (a) Hypogen pharmacophore model consisting of 2 HBD, 1 HY, PI, and NI, that was 
generated from 22 NA inhibitor structures [57]. (b) One of five hypogen pharmacophore models 

was generated from 181 selected NA inhibitor structures. The model included 2 HY, one HBA, 
and PI. (c) One of four hypogen best pharmacophore models was generated from 232 selected 
NA inhibitor structures. Pharmacophore features are color coded: magenta - hydrogen bond 

donor (HBD), green - hydrogen bond acceptor (HBA), blue – hydrophobic feature (Hy), blue – 
Negative Ionizable (NI), red - Positive ionizable (PI).

Muchtaridi et al. (2014) have created 3D-pharmacophore models with features similar to 
those described above. The best models were applied to successfully screen natural product 
compounds from the NADI database [59]. Hammad et al. [60] resumed that all the pharmacophore 
models discovered have HBD, HBA, NI, and PI. Pharmacophore model A-5-5 includes only 3 HBA 
and NI while model A-8-1 consists of more complete features (HBD, HBA, HY, NI, and PI). Model 
B-3-2 contains 2HBD, 2HY, and NI while model C-1-2 consist 2HBD and 2 HY.

3D-pharmacophore model prepared by Zhang et al. [57] includes 2 HBD, PI, NI, and HY. In this 
model, OTV was used as the most active compound which is similar to T2S202 model. However, 
the distance of inter-features in Zhang’s model is around 4.0-6.47 Å A, while

T2S202 model has distance about 3.487 - 7.826 Å, thus it might indicate that there are 
conformational differences of OTV between both models. For example, NI and PI of Zhang’s and 
T2S202 models mapped into same chemical groups of OTV (10) while the distance of PI and NI in 
the both models were different (Zhang’s:4.90 Å; T2S202:6.54 Å).
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VIRTUAL SCREENING
Virtual Screening (VS) is a method which attempts to rank candidate molecules in descending 

order by likelihood of biological activity, hence reducing the number of compounds for 
experimental evaluations [61]. Suggested, that this method can improve the reliability of the 
measurements. VS are based on computer filtering tools to effectively eliminate inactive small 
molecules and find lead compounds. The VS is used for browsing databases and molecules 
fitting either an established pharmacophore model or a three dimensional (3D) structure of a 
macromolecular target [62]. Both LBDD (pharmacophore) and SBDD (docking) approaches can 
be utilized in virtual screening for lead identification and optimization [23, 63, 64]. Success stories 
of these methods have been reviewed by Villoutreix et al. (2000), Kubinyi et al (2006) and Gosh 
et al. (2006). In neuraminidase targeted case, Ikram et al., (2015) employed docking for virtual 
screening to find neuraminidase inhibitors from natural products, while Muchtaridi et al. (2014) 
used combination of pharmacophore-docking approaches to find the lead compounds. Hammad 
et al. used their pharmacophore models (Figure 3b) to find compounds from NCI potentially 
active against NA. They discovered the top hits based on pharmacophore ranking that showed an 
in vitro IC50 value of 1.8 µM [49].

CONCLUSION AND FUTURE PERSPECTIVES
Combination of the in silico methods of and bioassay-guided isolation were applied to find 

potent inhibitors of the neuraminidase. Among in silico methods, pharmacophore modeling and 
molecular docking were found particularly useful.
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ABSTRACT
Undecaprenyl Diphosphate Synthase (UPPS) is of interest as a target for antibiotic development. 

It catalyses the synthesis of undecaprenyl diphosphate, a C55 isoprene lipid carrier required 
during synthesis of peptidoglycan, a cell wall component, in many bacteria. Its substrates are 
isoprenyl diphosphate and farnesyl diphosphate. In this work, we performed molecular dynamics 
calculations on the apo-protein, substrate-bound protein, and product-bound protein from E. coli 
to understand better the mechanism of substrate entry and product release from the reaction 
cavity, which has been found, from crystal structures, to open via separation between two of the 
α-helices, α2 and α3. Our work confirms significant volume fluctuations in the reaction cavity over 
simulation time, accompanied by significant volume differences between the dimer subunits at a 
given time step. These appear not to be from overall protein backbone conformational changes, 
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but primarily from reorientation of the α3 helix and from sidechain reorientations in residues 
lining the cavity surface. We have also observed that there are salt bridges between the three 
α-helices (α2, α3 and α4) comprising the outer wall of the reaction cavity; they limit the ability of 
these helices to separate as required for substrate entry and product release. These salt bridges 
are found in all the UPPS crystal structures obtained to date, though not at conserved positions, 
and may control protein activity.

Keywords: Ditrans; Polycis-undecaprenyl-diphosphate synthase [(2E,6E)-farnesyl-
diphosphate specific]; Undecaprenyl synthase; Molecular dynamics; Homodimer; Asymmetry

Abbreviations: FPP: Farnesyl Pyrophosphate; FPS: Farnesyl Thiopyrophosphate; IPP: 
Isopentylpyrophosphate; NPT Thermodynamical Condition of Constant Number, Pressure and 
Temperature; NVT: Thermodynamical Condition of Constant Number, Volume, and Temperature; 
PBC: Periodic Boundary Conditions; PCA Principal Component Analysis; PDB: Protein Data Bank; 
UPPS: Ditrans, Polycis-Undecaprenyl-Diphosphate Synthase 

INTRODUCTION 
Undecaprenyl diphosphate synthase superfamily members catalyze the synthesis of straight-

chain isoprenes. We consider here ditrans, polycis-undecaprenyl-diphosphate synthase [(2E,6E)-
farnesyl-diphosphate specific] (EC 2.5.1.31) (UPPS) from E. coli which catalyses the synthesis of 
Undecaprenyl Pyrophosphate (UPP), a C55 compound used to synthesize a lipid carrier by a wide 
range of bacteria during peptidoglycan biosynthesis[1-3]. As the protein is an integral part of 
cell wall synthesis, it is thus of interest as a target for antibiotic development [4]. UPPS adds 
eight Isoprenyl Units (IPP) to Farnesyl Pyrophosphate (FPP). The substrate pyrophosphate head 
groups are bound by a “P-loop” consisting of residues G-N-G/R-R [5], which are numbered 27 to 30 
in Micrococcus luteus UPPS (The third residue in the P-loop is not strictly conserved and is either 
G or R, hence ‘G/R’). Several crystal structures for UPPS with or without substrate analogs, as 
well as with bound inhibitors, are in the Protein Data Bank [4-13]. Isoprenyl addition in UPPS has 
been experimentally demonstrated to occur via an associative SN2 mechanism [14]. Experiments 
have also determined that in E. coli UPPS, FPP binds first [15], followed by IPP. UPPS is a ‘metal 
activated’ enzyme; Mg ion is required for activity [16], though not incorporated into the crystal 
structure. UPPS is also activated by lipids or anionic detergents [17]. In each reported structure 
with bound molecules, the compounds are so deep within the protein that it is obvious significant 
conformational rearrangement must occur in order for binding or release to be possible.

METHODS
Substrate-bound model: The series PDB 1X06, 1X07, 1X08, and 1X09 was used to prepare a 

substrate-bound model for molecular dynamics. As coordinates for only one protein monomer unit 
were deposited, the second unit was generated from the crystal symmetry data with Chimera [18]. 
1X08 and 1X09 were D26A mutants, which were back-mutated using Maestro (Schrodinger Inc., 
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Portland OR USA) software. The fragment of FPS (farnesyl thiopyrophosphate, an analog of FPP 
with sulfur instead of oxygen linking the hydrocarbon to phosphorus) far from the pyrophosphate 
binding site was deleted. 1X08 had a complete FPS chain, but the IPP was not resolved. Thus 
the IPP coordinates from 1X09 were used (1X09 lacked the FPS hydrocarbon chain). The partial 
substrate coordinates in 1X08 and 1X09 were mutually aligned using the Multiseq plugin in VMD 
[19] to align the surrounding protein, and combined into a unified set for future use. Protonation 
states were determined using PDB2PQR [20] in the presence of substrates. Partial charges on the 
substrate molecules for use with PDB2PQR were calculated using the Swissparam server [21]. 
Hydrogens were added, and the model was solvated and ionized (neutralized and NaCl added 
to 0.15M) using the Maestro GUI. The model system was equilibrated locally using the default 
settings in Desmond [22]: minimization with restrained solute, full minimization, Berendsen 
NVT molecular dynamics at 10K, Berendsen NPT dynamics at 10K, Berendsen NPT simulation at 
300K with restrained solute, Berendsen NPT simulation at 300K with no restraints, then finally, 
100psec of molecular dynamics. Simulations were carried out to ~80nsec using Desmond 2.0.4 
using the final equilibrated structure. The use of periodic boundary conditions to compensate for 
the small size (relative to real life) of simulation systems resulted in some frames having one of 
the monomer units in a unit cell adjacent to its partner instead of in the same unit cell. There are 
software tools to correct the situation; the process is called “unwrapping”. The trajectory was 
unwrapped using PBC Tools [23]. The PBC Tools center selection was varied until a wrapping 
was achieved in which only ~6% of the frames contained wrapping errors. These errors occurred 
between 48.4 and 60.92 n sec, with four additional bad frames from 63.59 to 63.63 nsec inclusive. 
These frames were excluded from the analyses of cavity volumes.

Apo-protein model: PDB 3QAS, apo-UPPS, had the 72-83 loop fully resolved in only one of the 
protein dimer units. There were two choices for constructing a model system containing both 
loops: perform a symmetry operation on a copy of the fully-resolved unit to superimpose it on the 
partially-resolved unit, or to perform the same symmetry operation only on the missing residues 
of the flexible loop and edit them into the gap. The first choice resulted in a system with a large 
positive free energy of dimerization as computed from an 8-nsec NAMD [24] simulation using 
the MM/PBSA method implemented in AMBER11 [25]. (See next paragraph). Consequently, the 
second method was adopted, and the missing residues edited into the chain with the gap. This 
was done by selecting residues 71-90 (residues 72-89 were not resolved) and using Maestro’s 
superimpose atoms feature to superimpose the Cα of residues 71 and 90 of the loop to be inserted 
on their counterparts at the limits of the protein gap, and deleting one copy of the duplicated 
residues 71 and 90. The energies of the ‘splices’ were minimized using the loop minimization 
feature of Maestro. This second model was processed as described above, and both Desmond 
and NAMD simulations rerun. MM/GBSA calculated a favorable dimerization free energy for the 
NAMD trajectory. Desmond 3.0.1 was used for 80nsec of simulation. This version has improved 
routines to prevent protein wrapping to other periodic cells, and PBC Tools was not required.
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Checking the protein-protein dimerization free energy: In order to check the order of 
magnitude of ΔGdimer expected for UPPS, we computed an 8-nsec test trajectory from PDB 2VG4, 
a system for which coordinates for both dimer units with all residues resolved are available. It 
gave -127 ± 15 Kcal/mol for ΔGdimer. (250 points equally spaced between 4 and 8nsec were used 
for the enthalpy term, and 20 points equally spaced along the same interval were used for the 
entropy term). The same calculation was performed on a 2VG4-based dimer obtained by rotating 
one of the monomer units, resulting in -104 ± 12 Kcal/mol. This difference indicates that local 
symmetry-breaking in dimer interfaces may stabilize dimer interactions. Δ Gdimer for 3QAS dimer 
with the 72-89 gap filled in as described in the previous paragraph gave Δ Gdimer= -99 ± 9 Kcal/mol. 

Product-bound UPPS model: Product-bound UPPS was also simulated using the coordinates of 
PDB 1X06. The build function of the Schrodinger Maestro GUI was used to build the C55 product. 
The molecular mechanics minimization routine in Maestro was used to minimize the resulting 
structure. As reported by Chen et al. [26], the minimized structure is very compact compared to 
the extended form in which one would draw it. The superimpose atoms function of Maestro was 
used to superimpose the pyrophosphate group of the product structure over that in FPS. The 
resulting steric clashes were displayed (‘ugly’ contacts in Maestro terminology) using the measure 
contacts feature of Maestro. Dihedral angles were manually adjusted to reduce the number of 
these ‘ugly’ contacts. As dihedrals were adjusted, an effort was made to direct the long axis of the 
three trans-double bonds toward L137, as L137 has been determined from mutation studies to 
control product chain length [7]. Once the ‘ugly’ contacts had been reduced to a small number, 
the resulting structure was minimized with protein backbone constraints within Maestro. Only 
one ‘ugly’ contact of the original 80 remained. This structure was used for molecular dynamics 
simulation, and equilibrated as previously. Production MD was done with Desmond 3.0.1.

Domain analysis was performed with the DynDom server [27]. Cavity volumes and substrate 
volumes were computed with 3V [28]. 3V computations were performed with the surface-
limiting probe set to 6 Å and the concave cavity surface probe set to 2 Å. The grid spacing was 
0.5 Å, and the minimum volume to be selected as a candidate cavity was set to 500Å3, based on 
the substrate volume of ~750Å3. These settings calculated two cavities in 98% of the trajectory 
frames of the substrate-bound protein simulation. 3V sometimes identified the cavity on chain A 
first, sometimes the one on chain B was identified first. It was not related to the relative cavity 
sizes. Consequently, it was not possible to plot the time course of cavity sizes for a given chain. 
Instead, we plotted (data not included) the distribution of cavity sizes on both chains, and the 
differences in volume between the two cavities in a given trajectory frame. Cavity volumes were 
visualized using UCSF Chimera [18]. When a rendering of the opening of a cavity was desirable, 
the Castp server [29] was used with the default probe radius of 1.4 Å3. VMD [19] was used for 
other analyses. 

Principal component analysis (PCA) was done using the AMBER ptraj utility, and plotted 
(data not included) with gnuplot [30]. Asymmetry scores were calculated as in [31]. Sequence 
alignments were done with the ClustalW server [32]. 
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RESULTS AND DISCUSSION
UPPS Mechanism from Crystal Structures

UPPS is a homodimer with seven α helices and six β strands in each unit (Figure.1). Domain 
analysis [27] identifies regions of the protein that move as a unit, as well as the sections that must 
move the most in order to permit these motions to occur. It requires input of two structures. 
Since crystal structures of substrate-bound (FPS/IPP) protein (1X08) and apo-protein (3QAS) 
were available, domain analysis was possible. The result indicated that residues 17-68 and 97-
237 superimpose (fixed domain). Residues 72- 92 were most different in the two structures 
(mobile domain). These residues form the loop connecting helices α2 and α3 and part of the α3 
helix. The bending regions are residues 68-71 and 93-96. The difference in position of residues 
72-92 between apo-protein and substrate-bound protein were determined to consist of an 84º 
rotation and a translation of 2.9 Å. These relationships have been previously noted and reported 
qualitatively, without the domain analysis which clarifies the relationships between fixed and 
moving segments of the chain. The comparatively long FPP molecule is thought to enter the 
reaction cavity via space between the α2 and α3 helices [6]. 

The domain analysis is thus in agreement with the observation that residues 72-83 are often 
not resolved in apo-protein crystal structures [15], and change orientation on substrate binding 
or inhibition. Residues 74, 75, 77, and 81 from the flexible loop are involved in catalytic activity, 
as demonstrated by mutations [15]. The substrate-binding pocket volume is ~15% larger in 
apo-UPPS (980Å3) than in substrate-bound UPPS (850 Å3). In Figure.1, the substrates have been 
positioned into apo-UPPS by superimposing the combined substrate coordinates from PDB 1X08 
and 1X09 over 3QAS. Although the pockets in both monomers have openings between the α2 
and α3 helices, (the yellow surface at the right of Figure. 1, oriented roughly perpendicular to the 
page) these openings are shorter than FPP. FPP binding may thus be dependent on transient, even 
more open, structures. These openings are even less a fit for the C55 product. 
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Figure 1: Apo-UPPS (PDB 3QAS) with superimposed substrates FPP and IPP from PDB 1X08. 
The surface/pocket intersections are shown. The protein surface is transparent light gray, 

surface/pocket intersections are colored yellow and green.

The Protein Data Bank contains several E. coli UPPS structures bound with inhibitors for 
which coordinates of both protein molecules in the dimer have been deposited (some are PDB 
2E98, 2E99, 2E9A, 2E9C, 2E9D) [10]. In these structures, more than one molecule of inhibitor 
binds, with unequal numbers of inhibitors in the two dimer units. PDB 1UEH has product-analog 
detergent bound to only one of the dimer units [33]. This suggested asymmetry with functional 
implications, so the global asymmetry score, 0.7, was computed using those residues from 20 
to 235 which were resolved in both dimer units of PDB 3QAS. A recent study of asymmetry in 
homodimers indicated that 76% of the homodimers studied had global asymmetry scores ≤ 
0.4 (‘highly symmetrical’), while ~90% had global asymmetry scores ≤ 1. Proteins with scores 
from 1-3 were classified as having ‘limited symmetrical organization’ and those with scores > 
5 as having ‘gross profound asymmetry’ [31]. UPPS thus appears to be on the border between 
symmetrical and modestly asymmetrical homodimers.

There are also openings of significant surface area between helices 2, 3, and 4 and the 
boundary between the two monomer units in 3QAS. These last may provide an entry point for IPP, 
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which binds close enough to the surface for the pyrophosphate head group to protrude slightly 
(blue patch in Figure.4a). It is difficult to picture MgIPP entering via the gap between α2 and α3 
in the presence of FPP, and working its way around the FPP to the IPP binding site. There are 
surface patches of both negative charge (attractive to Mg) and positive charge (attractive to the 
pyrophosphate) on the surface near the MgIPP and FPP binding sites. 

Molecular Dynamics Simulations – apo-UPPS

The protein was stable over the course of the simulation time as apparent from the backbone 
RMSD (1.9 ± 0.3Å). Principal component analysis indicated that, although significant regions 
of component space were visited, each monomer sampled a slightly different region in a non-
uniform manner; these simulations have not converged in 80nsec, which was the simulation time 
feasible for us.

In the apo-protein constructed for molecular dynamics simulation, the two cavities had 
volumes of 989 and 1003 Å3. This slight asymmetry is possibly due to reconstructing the 72-83 
loop in chain B, and increased markedly during the simulation. Also, only 75% of 2070 trajectory 
frames analyzed retained two detectable cavities. In frames with one cavity which were examined 
visually, the cavities have coalesced. The peak in the cavity volume distributions is between 501 
and 750Å3, while the most frequently observed difference between the volumes of the two cavities 
in a given frame is between 501 and 1000 Å3 (40% of the frames). Thus it was most common for 
one of the cavities to be rather compact, with the other larger by 50% or more. 

Figure.2 is a view of the two cavities in frame 3184 (retrieved after 31.84 ns of production 
MD), the frame with the maximum calculated cavity volume difference. The large cavity on chain 
A also has a large area in common with the protein surface (Figure.2a), which continues between 
helices α2 and α3. In Figure.2b a roughly oval opening between the α3 and α4 helices is also 
apparent. The overall backbone RMSD for residues 20 to 235 (chain B compared to chain A) has 
increased from 0.66A in the crystal structure to 1.36 in this frame. The RMSD difference between 
chains A and B for helices α2, α3, and α4 is, respectively, 1.34, 1.25 and 1.42. The RMSD difference 
for the loop 72-83 is 4.24. The global asymmetry score for this frame is 1.5. The variability in 
reaction cavity volume may be related to cavity size requirements for accommodating growing 
product, and seems to depend more on side chain reorientation than on backbone flexibility, 
given the modest RMSD between helices α2, α3, and α4 in the two chains in this frame, and the 
modest asymmetry score. Inspection of this frame revealed several residues at the cavity walls 
with significantly different orientations in the two chains. 
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Figure 2: Apo-UPPS trajectory frame 3184 (retrieved after 31.84 ns of production MD), the 
frame with the greatest volume difference between cavities. The protein surface is rendered in 
transparent gray. The N-terminal of chain B is highlighted in red. The chain A cavity (volume is 
2522 Å3) is outlined in yellow (right side in panel a, forward in panel b), that in chain B green 

(volume is 568 Å3) (left side in panel a, forward in panel c). The brighter the color of the cavity, 
the closer to the protein surface it is. The electrostatically-interacting residues R51/E96 and 

D94/R123 are highlighted in blue (R) or red (D,E).

It was apparent from examination of a random selection of trajectory frames that cavity 
volumes fluctuate in directions that do not contribute to the ability of substrates/products to 
enter/exit the protein. Spacing between the α2 and α3 helices has been considered the key 
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difference between an open (able to accept substrate or release product) and closed (reacting) 
structure [6,7]. The occurrence of cavity intersections with the protein surface between helices α2 
and α3 or α3 and α4 did not seem to correlate with maximal overall RMSD from the initial frame. 
However, when PDB 1X06 was used as reference, and backbone RMSD calculated for residues 
84-91 (helix α3), we identified 84 frames with RMSD > 5.0 Å. Spot-check of random frames in 
this group indicated that such frames do have openings between helices α2 and α3. The reaction 
cavity volume fluctuations thus appear to result from both motion in the α3-helix and sidechain 
reorientations along the entire reaction cavity boundary.

It became evident from examining the trajectory that residues R51 and E96, as well as D94 
and R123 form salt bridges linking α3 helix with α2 and α4. These pairs also have their side 
chains oriented toward each other in the crystal structure. Salt bridge analysis of the trajectory 
indicated that the distance between an N on R51 and O on E96 was 3.3 ± 0.2Å on both chains. 
These residues are located near the center of the two helices. The α3 and α4 helices were similarly 
tied together by D94 and R123 for 80% of the trajectory on chain B, (average N-O distance 3.4 ± 
0.2Å) but only for 30% of the trajectory on chain A (average N-O distance 5.4 ± 1.3 Å). D94 and 
E96 are also two of the residues in one of the bending regions identified in the DynDom analysis. 
These interactions, particularly R51/E96, may, by their presence or absence, serve to regulate 
enzyme activity by controlling substrate entry and/or product exit. 

The positions 51, 94, 96, and 123 are not conserved across UPPS. However, the available 
crystal structures from five different species all had salt bridges across the α2 and α3 helices, 
and only one (Micrococcus luteus) lacked a bridge between the α3 and α4 helices. In Helicobacter 
pylori there are two basic residues in the α2 helix oriented properly for bridging α2 to α3. In 
Mycobacterium tuberculosis there are two basic residues oriented properly for bridging α3 to α4, 
while in Campylobacter jejuni there is one basic residue oriented so it could bridge to two acidic 
residues. The bridges occur across slightly different portions of the helices, as is evident from the 
aligned sequence segments shown in Table 1.
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Table 1: Partial alignments of helices α2-α4 in UPPS sequences for which there are PDB entries, 
showing the positions of salt-bridging residues. Residues numbered as in the PDB entries. 

Those which are bold and underlined bridge the α2 and α3 helices, those which are italicized 
and highlighted bridge the α3 and α4 helices. Numbers above the alignments indicate the α2, 

α3, and α4 helices in E. coli UPPS. 1X06 is from E. coli, 1F75 from Micrococcus luteus, 2DTN from 
Helicobacter pylori, 2VG4 from Mycobacterium tuberculosis, and 3UGS from Campylobacter jejuni.

With FPP binding to UPPS first, it is clear that IPP must enter via an opening between the FPP 
binding site and the outer part of the reaction cavity formed by the helices α2, α3, and α4. Figure.3 
shows a frame selected from the apo-protein trajectory for its large opening to the surface in the 
vicinity of residues within 4Å of the IPP pyrophosphate in PDB 1X09. Conformations similar to 
this one probably allow the comparatively small IPP molecule to enter after the much larger FPP 
has bound.

MD simulations of substrate-bound UPPS

The substrate-bound protein was also stable over the course of the simulation (backbone 
RMSD 1.8 ± 0.3Å). The volume distribution was much narrower than for the apo-protein. Less 
than 1% of frames had one cavity (vs. 25% in apo-protein). Less than 1% of volumes were greater 
than 1500 Å3 (vs. 26%). For reference, the substrates – MgIPP and FPS – had an average combined 
volume of 780 ± 10 Å3, with a maximum of 820 and a minimum of 745 Å3. The minimum cavity 
volume measured was 555 Å3. 22% of the cavities were less than 750 Å3 (vs. 36%). The substrate 
protrudes slightly from the protein surface (Figure.3). The most frequent volume range was 
751-1000 Å3, higher than in the apo-protein, and the most frequent volume difference was less 
than 250 Å3, with a maximum volume difference of 740 Å3, also less than in apo-UPPS. Substrates 
decrease protein flexibility in MD, consistent with the observation that the flexible 72-83 loop is 
better-resolved in crystals of protein bound with small molecules, whether substrate analogs, 
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inhibitors, or detergent, than in apo-protein. The protein structure has tightened to such a degree 
on binding substrate that there are few connections between the reaction cavity and protein 
surface, as apparent in Figure.4. 

Figure 3: apo-UPPS with substrate binding cavity. Substrate binding cavity is shown in yellow 
surface representation. Of the charged residues within 4Å of IPP in PDB 1X09, D26, R194, 

R200, and R202, only parts of some of the positively charged residues are visible in this view 
(blue surface to the left of the substrate molecules). The substrates are represented by spheres, 
with Mg the small green sphere between IPP (upper red spheres – oxygen and orange spheres 

- phosphorus) and FPS (lower). Source of image: trajectory frame 3184 from MD simulation 
(retrieved after 31.84 ns of production MD).
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Figure 4: UPPS with bound substrate analogs, with maximum difference in cavity volumes (740 
Å3). The N-terminal of chain B is highlighted red. The surface of the chain A cavity is yellow 
(volume 770 Å3), that of the chain B cavity green (volume 1510 Å3). The substrate analog 

surfaces are rendered blue. The protein surface has been added in transparent gray. The grayish 
cast in the cavity surface colors indicates they are all below the surface. Only the bright blue 
4a and 4c signifies that some of the substrates protrude from the surface. Source of image: 

trajectory frame 8016 from MD simulation (retrieved after 80.16 ns of production MD).
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MD simulations of product-bound UPPS

In view of the reduction in reaction cavity size induced by substrates, we performed a short 
simulation (20nsec) with two bound product analogs. Backbone RMSD (1.9 ± 0.1 Å) indicated 
the model was stable over the trajectory. As this trajectory was so short, we did not plot reaction 
cavity volume distributions. The average volume of product was 1480 ± 20Å3; well within the 
range observed in the apo-protein trajectory. The product volume is roughly double that of the 
initial substrates, which have about half the number of atoms as the product. Figure.5 shows a 
frame with a greater exposure of product than was generally observed across the trajectory.

Figure 5: UPPS with modeled product. The view is rotated to show best the surface exposure 
of product between helices α2 and α3. Bright blue indicates exposed product surface; hazy blue 
indicates that the product is inside the protein surface, rendered in transparent gray. Source of 
image: frame 702 from trajectory of MD simulation (retrieved after 7.02 ns of production MD).

SUMMARY AND CONCLUSIONS
Previous MD simulations [4] showed that the reaction cavity in apo-UPPS varied significantly 

in size, as did ours. Comparison of the volumes with protein surface indicated that the protein 
may only transiently be able to accept substrates; this may be a mechanism for control of activity. 
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Salt bridges between R51/E96 and R94/D123 may limit the spacing between the three α-helices 
(α2, α3 and α4) forming the outer part of the reaction cavity; similar bridges occur in other UPPS, 
but not at the homologous positions. Transient absence of these salt bridges may thus contribute 
significantly to conformations able to accept substrate or release product, as motion of the α3 
helix of this set is crucial for substrate entry and product release. The most frequently observed 
conformation of apo-enzyme had one cavity significantly larger in volume (1251-1500 Å3) than 
the average substrates volume (780 Å3), and one cavity (501-750 Å3) too small or only marginally 
large enough to accept substrates, consistent with crystal structures having different numbers 
of inhibitors, substrates, or product analogs in each dimer unit. Backbone RMSD computed 
across the apo-UPPS trajectory with the substrate-bound crystal structure as reference showed 
only modest differences, while frames with RMSD > 5Å in the α3-helix were identified. Thus, the 
computed reaction cavity volume differences seem to originate in a combination of significant 
differences in sidechain orientation between the dimer units, and α3-helix motion. A model 
system with substrates in both dimer units was stable under our simulation conditions, as was a 
model with two product molecules, consistent with reaction cavity volume differences depending 
more on local orientation than overall protein reorientation. It is unclear what the physiological 
implications of the structural heterogeneity and asymmetry in UPPS are. We hope this work 
stimulates further studies.
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ABSTRACT
Molecular dynamics simulations and molecular docking approaches were employed to 

explain the observed structural and functional thermostabilization of endoinulinase (EC 3.2.1.7) 
through semi-rational chemical modification of surface accessible lysine residues by Pyridoxal-
5′-Phosphate (PLP) and ascorbate reduction. Improved stability was observed on modifications 
in the absence or presence of inulin, which indicates storage or functional thermostabilization, 
respectively. Comparisons have been made between non-modified and modified enzyme by the 
determination of Tm as an indicator of structural stability, temperature-dependent half-lives 
(t1/2), and energy barrier of the inactivation process, in a storage thermostability approach. 
These parameters coincided well with the observed stabilization of the engineered enzyme. The 
molecular dynamics simulations and molecular docking results revealed that, the establishment 
of intramolecular interactions between the covalently attached PLP–Lys381 and Arg526 and 
Ser376 residues can be the origin of the intramolecular contacts in the modified enzyme.

Molecular Dynamics Simulations and Molecular 
Docking Approaches in Endoinulinase Chemical 

Modification
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Keywords: Endoinulinase; Molecular dynamics simulations; Molecular docking; Chemical 
modification; Thermostability

Abbreviations: PLP:  Pyridoxal-5′-Phosphate; Tm: Transition Midpoint Temperature; t1/2: 
Half-life; Ea(in): Activation Energy of Denaturation/Inactivation; HFS: High-Fructose Syrup; 
ASA: Accessible Surface Area (in angstrom squared); DNS:  Dinitrosalicylic Acid; DSC:  Differential 
Scanning Calorimetry; MD: Molecular Dynamics; SPC: Simple Point Charges; RMSD: Root Mean 
Square Deviation

INTRODUCTION
Inulinases are comprised of endo-inulinase (EC 3.2.1.7) and exo-inulinase (EC 3.2.1.80). 

Inulinases belong to the glycoside hydrolase family GH32 [1,2] based on amino acid sequence 
comparisons and the presence of conserved amino acid domains. They act as β-fructan 
fructanohydrolases and hydrolyze inulin to produce High-Fructose Syrup (HFS) and fructo-
oligosaccharide. These products are important ingredients in the food and pharmaceutical 
industries. The structure of inulin consists of a linear polyfructan with β2→1 linkages between 
fructose residues and a terminal sucrose moiety [3]. Inulin is a storage polysaccharide and is 
accumulated in the underground tubers of many plants, including the Jerusalem artichoke 
(Helianthus tuberosus), chicory (Cichorium intybus), dahlia (Dahlia pinnata), and dandelion 
(Taraxacum officinale) [4]. Because of solubility limitation and microbial contamination of 
inulin, the industrial hydrolysis of inulin is carried out at ≥50 °C, which is necessary to obtain 
an appropriate hydrolysis rate. At this temperature, most of the inulinases lose their activity 
after a few hours. Therefore, there is a growing interest in introducing inulinases with improved 
thermostability [5]. The thermal stability of enzymes is an important parameter in enzymatic 
processes as it determines the limits for use and reuse of the enzyme, and therefore affects the 
cost. In our previous work, we reported the semi-rational modification of endo-inulinase by using 
Pyridoxal 5′-Phosphate (PLP) [6] as a specific modifier of lysine residues [2]. We have reported 
that lysine residues are more accessible at the surface of the C-terminal domain compared to 
the N-terminal domain of the inulinase based on the calculated Accessible Surface Areas (ASA) 
of 123.1 and 74.1 Å2, respectively [6]. Even though, the PLP modifications have brought about 
enzyme inactivation in several studies [7–16], we reported a case in which not only the enzyme 
activity was retained but also thermostability was improved. In this reaction, a Schiff base is 
formed between the ε-amino group of lysine as a nucleophile part and the aldehyde group of 
PLP [17–19]. The selectivity of the reaction, the spectral properties of the modified product, and 
the reversibility of the reaction are among the advantages of this chemical modification strategy 
[6,19]. Although, sodium borohydride is routinely used as a Schiff base-reducing agent, a safe and 
efficient reduction method using ascorbic acid as a novel Schiff base-reducing agent has been 
used. In this study, the knowledge of modeling, kinetics, and thermodynamics have been brought 
together to explain the endo-inulinase stabilization process by using PLP and ascorbate as the 
modification and reduction agents, respectively.
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MATERIALS AND METHODS
Materials

Ascorbic acid was purchased from Acros Organics (Morris Plains, NJ, USA). Endoinulinase 
(27 U/mg), inulin (chicory inulin), and pyridoxal 5′-phosphate were obtained from Fluka 
(Switzerland) and Dinitrosalicylic Acid (DNS) and other chemicals were purchased from Sigma 
Chemical Company (St. Louis, MO, USA).

PLP modification of endo-inulinase

Endo-inulinase modification was performed by using PLP and ascorbate as the modifier and 
reducing agents, respectively [6]. In brief, endoinulinase at 0.1 mg ml−1 was modified by using PLP 
at 31.25 μM in 50 mM sodium phosphate buffer (pH 7.5) for at least 30 min then the enzyme–PLP 
complex was stabilized by reduction with ascorbic acid using 100 μl of freshly prepared solution 
of ascorbic acid (1 mM) in 50 mM phosphate buffer pH 7.0. To remove the excess ascorbate and 
PLP, overnight dialysis was performed against 50 mM sodium acetate buffer of pH 6.0 at 4 °C.

Enzyme assay

Endoinulinase assay was carried out through the assessment of the librated reducing sugar 
by using DNS. In brief, the assay mixture (55 μg ml−1 enzyme and 0.36 mg ml−1 inulin in 50 mM 
sodium acetate buffer of pH 5.5–6) was incubated at 37 °C for 15 min. The same concentration of 
sucrose was used for determining invertase activity instead of inulinase activity of the enzyme 
species. Next, the reaction was terminated by adding an equal volume of DNS reagent followed by 
incubating at 90 °C for 10 min. The absorbance was measured at 575 nm using a Camspec M550 
spectrophotometer in cells with 1 cm path length. One unit inulinase or invertase is defined as the 
amount of enzyme that liberated 1 μmol fructose (or glucose) per minute under assay conditions 
[20,21].

Structural thermostability analysis of endoinulinase

Comparative structural and functional thermostability analysis of non-modified and modified 
endoinulinases was carried out using Differential Scanning Calorimetry (DSC) measurements 
with a Model 6100 Nano II differential scanning calorimeter (Calorimetry Sciences Corp., USA) at 
a heating rate of 2 °C min−1 between 10 and 85 °C, under an extra constant pressure of  2 atm. The 
sample protein was used at 2.0 mg ml−1 in 50 mM phosphate buffer of pH 7.5, after degassing. 
The same buffer was used as a reference to perform the baseline run. For data collection and 
estimation of Tm values, the standard CpCalc software package and data acquisition program, 
DSC Run, were used [22].

Molecular dynamics simulation

The crystal structure of the native endo-inulinase from Aspergillus niger has not yet been 
elucidated, whereas the crystal structure of exo-inulinase from Aspergillus awamori has been 
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reported [2]. To determine the identity and similarity between amino acid sequences of exo-
inulinase from A. awamori (EC 3.2.1.80, with 537 amino acid residues) and endo-inulinase from 
A. niger (EC 3.2.1.7 with 494 amino acid residues), binary sequence alignment was performed 
using the FASTA program version 3 (35.04) that is located on the ExPasy server. The results 
revealed that the sequence identity between the two proteins was 31.6% and the similarity was 
62.9–64.5% over aligned residues.

Because, the similarity value between endo-inulinases and exo-inulinases was greater 
than 50%, for exo-inulinase, the three-dimensional crystal structure coordinates were used to 
determine the Molecular Dynamics (MD) simulation and docking studies of endoinulinase [6]. 
MD simulations were performed using the GROMACS program (version 4.0.3) with the GROMACS 
force field [23]. The starting geometries for the simulation were prepared from the initial 
coordinates of protein that were extracted from the modeled structure of inulinase in the protein 
data bank (PDB, entry 1Y9M). The protein consisted of 537 residues. Modified lysine was created 
as a new residue in the GROMACS program database. For this purpose, a PLP–lysine parameter 
was created by the PRODRG server [24], which is used to generate topologies for ligand–protein 
Complexes. The parameters were then transferred to the GROMACS-related libraries. The MD 
simulation protocol is as follows: The protein was first placed in a simulation cubic box of a suitable 
size and solvated with a 37,578 Simple Point Charge (SPC) water model and 20 Na+ counter ions 
to neutralize the entire negative charge. The water molecules and ions were subjected to energy 
minimization, while the inulinase was kept fixed in its initial configuration. Subsequently, the 
water and ions were allowed to evolve using MD simulation for 50 ps with a step time of 1 fs, 
again keeping the structure of the inulinase fixed. Next, the entire system was minimized using 
the steepest descent of 1,000 steps followed by conjugate gradients of 9,000 steps. In order to 
obtain equilibrium geometry at 300 K and 1 atm, the system was heated at a weak temperature 
(τ=0.1 ps) and pressure (τ=0.5 ps) coupling by taking advantage of the Berendsen algorithms 
[25]. The heating time for MD simulation at 100 and 200 K was 100 ps with a nonbounded cutoff 
of 14 Å. The MD simulation was further carried out for 2 ns at 300 K. We used LINCS to constrain 
the bond length [26]. MD simulations were carried out by particle mesh Ewald method [27]. The 
dynamic behavior and structural changes of the protein were analyzed by calculation of the Root 
Mean Square Deviation (RMSD).

Docking analysis

The intramolecular residues interacting with PLP were examined by using the LIGPLOT 
program. The program generates Lys–PLP interactions from three-dimensional coordinates in 
a 1Y9M PDB file (PDB ID, 1Y9M). The LIGPLOT algorithm was described by Wallace et al. and 
Turnay et al. in 2002 [28]. Simulations were performed for both the nonmodified and modified 
enzyme species.
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RESULTS
Structural Thermostability Analysis

We examined the thermodynamic and molecular simulation approaches to explain the 
structural, storage, and functional thermostabilization of endo-inulinase after the application of 
PLP modification followed by ascorbate reduction. According to our previous report [6], Figure 
1 presents the heat capacity scans of the non-modified and PLP modified without reducing (En-
PLP), and PLP modified with reducing by ascorbic acid (En-PLP-As). The results revealed that the 
thermal denaturation of endo-inulinase was an irreversible process. The Tm of modified enzyme 
(En-PLP-As) was 72.2 °C, whereas it was 64.1 °C for the non-modified and 64.9 °C for PLP-treated 
(without reducing) sample (En-PLP). Accordingly, the Tm of the enzyme is shown to have an 8.1 °C 
increase upon modification and emphasizes on the necessity of the reducing step. Therefore, the 
structural thermo-stabilization of the endo-inulinase has been achieved byusing this modification 
strategy consisting of PLP treatment and ascorbate reduction. 

Figure 1: Heat capacity scans of non-modified endo-inulinase (control) and modified without 
(Enz-PLP) and with reduction (Enz-PLP-As) by ascorbic acid. The standard CpCalc software 

package and data acquisition program, DSC Run, were employed for data analysis and evaluation 
of Tm values, (n=3).
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Molecular Dynamics Simulation and Docking Analysis

Molecular dynamics has enabled us to simulate the PLP-modified species of the enzyme to 
determine that modification created additional intramolecular contacts, which are thought be 
responsible for improving the thermostability and therefore the resistance as it relates to the 
thermoinactivation of the endoinulinase. Figure 2 shows the simulated structure and focuses on 
lysine residue (Lys381) at the linker closer to the C-domain, which is prone to modification. 

Figure 2: The simulated structure of PLP-modified endoinulinase on Lys381 at the link closer to 
the C-domain. Molecular dynamics simulations were performed by using the GROMACS program 
(version 4.0.3). For more details, please see the “Materials and Methods” section. In the modified 

enzyme, additional intramolecular contacts between covalently attached PLP-Lys381 with 
guanidinium group of Arg526 and at the hydroxyl group of Ser376 are formed.

The RMSD value as a factor of the equilibrated modified lysine inulinase and non-modified 
lysine is shown in Figure 3. It is evident that after 300 ps, both the structures reached an 
equilibrated state.
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Figure 3: Presents the RMSD versus time plot for the non-modified and PLP-modified 
endoinulinase during 2 ns of MD simulation.

The modified molecule was analyzed against the non-modified one by using the LIGPLOT 
program to examine the newly established intramolecular hydrogen bonds after the PLP 
modification process at the portion of Lys381 (Figure 4). Modification made it possible to create 
additional intramolecular contacts between covalently attached PLP–Lys381 with Arg526 (two 
possible hydrogen bonds between the phosphate of PLP and the guanidinium group of Arg526) 
and with Ser376, as illustrated in Figures 2 and 4. Also, additional intramolecular hydrophobic 
interactions are formed due to the modification process, in which Pro383 is involved. It seems 
that the modification process involved an interaction that enhanced the rigidity of the enzyme 
molecule.
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Figure 4: Docking analysis of intramolecular interactions in a two-dimensional representation 
of simulated endoinulinase structure [based on A. awamori exoinulinase (PDB ID, 1Y9M)], 

before (a) and after (b) PLP-modification at the Lys381 using the LIGPLOT program. New 
hydrogen bonds are formed between the phosphate group of PLP and Arg526 and Ser376 . The 

dashed lines indicate hydrogen bonds and the values indicate hydrogen bond lengths (in 
angstrom).

DISCUSSION
We are reporting the chemical modification of endo-inulinase to improve the thermostability 

of the enzyme through covalent attachment of the PLP molecules to the accessible lysine residues 
followed by ascorbate reduction [6]. Although most reports on the PLP modification of enzymes 
have resulted in enzyme inactivation due to the engagement of essential residues at the active 
site or non-desired structural alterations [14,18], our observations have demonstrated that 
the PLP modification of endoinulinase not only result in no activity loss but also brings about 
thermostability. 

Modified endoinulinase has an industrial potential for inulo-oligosaccharides and HFS 
production for use in food and pharmaceutical products. Thus, the industrial process for HFS and 
fructo-oligosaccharide production from inulin could be carried out at the higher temperatures 
necessary to achieve the appropriate hydrolysis rate. The DSC results (Figure.1) revealed that 
PLP modification of endoinulinase increases the Tm of the enzyme from 64.1 to 72.2 °C (8.1 °C 
increase in Tm). The thermal unfolding processes of the enzyme samples were achieved to be 
irreversible, as no transition peaks were obtained in the second run of heating. Therefore, under 
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such conditions, the thermodynamic parameters can be calculated using Ea (in) [13,21,28,29]. The 
results of the DSC analysis showed good agreement with the observed 4% increase in α-helical 
contents revealed by circular dichroism spectropolarimetry (details not shown) [6]. Protein 
thermostability has been reported to correlate with the larger fraction of residues in the α-helical 
conformation (Table 1) [29].

Table 1: The results of the secondary structure analysis of endoinulinase, before and after 
modification [6].

Scondary structure

α- Helix (%) β- Sheet (%) Turns (%) Random (%)

Control 13.60 42.60 14.50 29.30

En-PLP 13.80 44.50 13.10 28.60

Endo-PLP-As 17.60 31.80 20.20 30.40

Molecular dynamics and simulation approaches were used to elucidate the newly established 
interactions that explain the thermostabilization of the engineered enzyme. The simulated structure 
of the PLP-modified enzyme at the linker closer to the C domain, which is prone to modification 
(Figure.2) and the constructed LIGPLOT (Figure.4), presents newly established intramolecular 
interactions after modification at Lys381. This modification results in two possible hydrogen bonds 
between phosphates covalently attached to PLP–Lys381 and the guanidinium group of Arg526 
residue as well as between the hydroxyl group of PLP with Ser376. The hydrophobic groups of 
amino acid residues become closer through the formation of these intramolecular interactions. 
In conclusion, the structural, storage, and functional thermostabilization of PLP-modified/
ascorbate-reduced endoinulinase has been documented. In conclusion, the substrate specificity, 
structural, and storage/functional thermostability of the enzyme were efficiently improved upon 
PLP modification strategy, which has a potential application in the inulinase-based technology 
for the production of HFS and fructooligosaccharides. The mechanism of thermostabilization was 
assumed to be involved with the establishment of intramolecular interactions between covalently 
attached PLP–Lys381 and both the Arg526 and Ser376 residues as representative modification 
originated intramolecular contacts in the modified enzyme.
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Table 1: Services For Scientists, Research Centers and Pharma Industry.

FOR SCIENTISTS FOR RESEARCH CENTERS FOR PHARMA INDUSTRY

Free and Custom 
Consulting

How to attract funds, how to 
prepare grant proposal, where 
to submit it, which are the key 

points in attracting money. 
Use of molecular modelling 

methods, software in scientific 
research – workshops and 

trainings.

Learn how to use molecular modelling 
in scientific studies. Get trainings 

on software packages for molecular 
modelling. Get training on picture 

preparation for molecular biologists 
and biochemists. Get training on grant 
preparation, search, and submission. 

Learn how to attract commercial 
collaborators and partners and deal 

with them.

How to get more customers, how to get 
higher profit? How to involve molecular 
modelling and computational chemistry 

to increase revenue from your business? 
How to increase effectiveness of your 
web-site? How to utilize outsourcing 
marketing and sales services to get 

cheaper and higher effectivity result?

Molecular 
Modelling

Performing molecular 
modelling and computational 
chemistry works for primarily 
biologists, synthetic chemists 

research groups (for direct 
payment; participation 

in grants; and paper co-
authorship)

To supplement biochemistry, 
chemistry, molecular biology works 

in research center; to guide design of 
compounds for synthesis; to analyze 
with QSAR the in-house compounds 

synthesized; picture preparation 
service for molecular biologists and 

biochemists.

Make higher quality decisions on what 
to synthesize or extract. Cut spends and 
utilize our outsourcing services. Get our 
assistance in designing of compounds 
for synthesis, in analyzing your internal 

structural and bioactivity data, get 
guidance to increase directness of your 
synthetic and experimental works. Use 
our modelling services in preparation 
of better marketing materials; get high 

quality pictures for your scientific reports 
and publications.

Software 
Development

Developing and improving/ 
modifying software which 
research group uses for 

research (for direct payment; 
participation in grants; and 

paper co-authorship)

Design and development of custom 
software for scientific research; 
building beautiful and attracting 
web-site for your institution and 
its administration; developing, 
administration of databases.

Get better results using your custom 
software without spending resources and 
funds for internal development. Scientific 
software, databases, web-applications, 

marketing and sales automation 
solutions; website design, development, 

and administration.

Business 
Development

We assist in preparation 
of a grant proposal and its 

submission to funding bodies.

Outsourced business development 
department: searching for suppliers, 
partners, and customers for research 

center. Assisting in grant proposal 
preparation, submission, and 

administration; planning for funds 
attracting for the research center.

Optimize your business effectiveness, 
without spending much money and 
resources for that. Get cheaper and 

higher quality sources suppliers. Increase 
number of distributors for your products 

and services.

E-mail: info@venture-pharmaceuticals.com
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Table 2: International Distribution, Sales and Production Services.

Import-Export Activity
International Logistics and Supply of Medical Products to Distribution Chains, 
Local Pharmaceutical Distributors.
Focus on specialized patented medicines for specific human diseases.

International Supply and Distribution of 
Pharmaceutical Products

Servicing of patients affected with dangerous diseases, with population from 30 
million – HIV, Tuberculosis, Hepatitis, etc. 
Work with Government Bodies, WHO, Non-Commercial Organizations, and 
Charities

Servicing for the large human populations
Organizing of Regular Testing for People on Special and Dangerous Diseases. 
Collaborating with Government Bodies, WHO, Non-Commercial Organizations, 
and Charities.

Internet Services Paid Services for Healthy/Diseased People: 
Insurance, Discounted Medicines, Information Supply

Production for Customer Products Unique Customer Products: 
Pharmaceuticals, Cosmetics

Invitation for Potential Agent Companies to be Our 
Local Country Agents

Performing inside-country services for us and for our customers in your 
country, while being our Agent

E-mail: info@venture-pharmaceuticals.com

Table 3: Discovery, Marketing and Investment Services.

Discovery Computational Services
Computational Bio- and Chemo- informatics:
Drug Target search
Hit Compounds Search
Lead Compounds Search
Compounds Optimization
QSAR Studies
Pharmacophore Modeling
Homology Modeling
Design and Structure Optimization of 
Chemicals and Biologicals
Molecular Dynamics simulations and 
analysis

Software training:
We provide workshops and trainings on a wide selection of both 
free-available and commercial software packages for molecular 
modelling, molecular dynamics simulations, virtual screening, 
docking, homology modelling, bio-molecule visualization, and 
others

Software Sales, Hardware Consulting, Installation, Administration:
wide selection of software packages for drug design and drug 
discovery, molecular modelling, molecular dynamics simulations, 
virtual screening, computer-aided docking, homology modelling, 
bio-molecule visualization, and others

Training and Consulting:
All fields of structure-based and ligand-
based computer-aided design

Software Design and Developing:
Data Bases Design, Developing, and Administration
Website Design , Developing, and Administration

Laboratory Services
Synthetic Chemistry:
Custom Synthesis
Scheme Development
Scheme Optimization
From µg to kgs scale

Biochemistry:
Any type of biochemical studies

Marketing
Marketing and advertising materials:
Web-Design and Developing: web-pages, 
web-sites, e-shops
Logo Design, Booklet Design

Business Development:
Planning
Networking
Sales and Sourcing Channels Development

Marketing and Advertising 
Activity Plans, Promo-Actions:
Design
Organizing

Investment

For Seeker Company – Search for investor 
and representing them investment project:
Angel Investors
Venture Investors
Investment Institutions

For Investor Company – Search for Investment Projects, pre-
selection, and representing them to the investment body:
Start-Ups
Young Companies
Matured Companies

E-mail: info@venture-pharmaceuticals.com
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