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A B S T R A C T  
 

The current review purpose is to present a general overview of different experimental design methods that are 
applied to investigate the effect of key factors on dark fermentation and are efficient in predicting the 
experimental data for biological hydrogen production. The methods of two levels full and fractional factorials, 
Plackett–Burman, and Taguchi were employed for screening the most important factors in dark fermentation. 
The techniques of central composite, Box–Behnken, Taguchi, and one factor at a time for optimization of the 
dark fermentation were extensively used. Papers on the three levels full and fractional factorials, artificial 
neural network coupled with genetic algorithm, simplex, and D-optimal for the optimization of the dark 
fermentation are limited, and no paper on the Dohlert design has been reported to date. The artificial neural 
network coupled with genetic algorithm is a more suitable method than the RSM technique for the 
optimization of dark fermentation. Literature shows that the optimization of critical factors plays a significant 
role in dark fermentation and is useful to improve the hydrogen production rate and hydrogen yield. 

1. INTRODUCTION1 

In recent years, hydrogen has received global recognition as a 
clean energy carrier with a potential to substitute liquid fossil 
fuels. Hydrogen can be useful for solving the problem of 
growing global warming and greenhouse gas emissions. 
Hydrogen is produced from fossil fuel, water, and biomass 
through physicochemical and biological methods [1]. One of 
hydrogen production methods is dark fermentation that occurs 
under facultative or strictly anaerobic conditions in the 
absence of light [2,3]. Dark fermentation as a complicated 
multiproduct process is affected by many variables such as 
temperature, pH, bioreactor configuration, hydrogen partial 
pressure, substrate type and concentration, nutrients, 
inhibitors, hydraulic retention time (HRT), and so on [4,5]. 
Thus, its production depends largely on the optimization of 
various controlling factors. 
   Experiments are described as tests that make purposeful 
changes in the factors (input variables) of a system or process, 
and effect of these changes in the responses (output variables) 
are noticed [6]. It is evident that if experiments are carried out 
randomly, the observed results will also be random and are 
affected by noise. Therefore, it is beneficial to fit the data with 
appropriate statistical methods [7]. Design of experiments 
(DOE) is a technique for systematically employing statistical 
methods to carry out experiments, that was proposed by Fisher 
in 1920 [8]. An appropriate DOE must avoid systematic error, 
be accurate, allow the estimation of the size of the random 
error, and have extensive validity [9]. Randomization, 
replication, and blocking are the three basic principles of DOE 
[10]. Design of experiments is employed for three 
experimental objectives including screening, optimization, and 
robustness testing. The screening stage is applied to recognize 
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the key factors that affect the results [11]. The two levels full 
factorial design (2-FFD), two levels fractional factorial design 
(2-PFD), and Plackett–Burman design (PBD) methods are 
mainly used for the screening stage [12]. Frequently, the 
initial estimate of the factor levels is far from the actual 
optimum values [6,13]. Thus, the approximate level of key 
factors generating optimal conditions can be estimated using 
approaches such as steepest ascent and descent. The 
optimization is a critical step to obtain appropriate levels of 
key factors to find the best possible response. The 
optimization represents increasing the efficiency of a product, 
a system, a procedure, or a process to receive the maximum 
benefit out of it [14] and is more implicated than the screening 
stage and requires more experiments to be performed [11]. 
The models of one factor at a time (OFAT), Taguchi design 
(TD), three levels full factorial design (3-FFD), three levels 
fractional factorial design (3-PFD), Box-Behnken design 
(BBD), central composite design (CCD), D-optimal (DO), 
Dohlert design (DD), simplex method (SM), and artificial 
neural network (AAN) design are mainly used for the 
optimization stage. DOE methods are shown in Fig. 1. The 
choice of a suitable DOE method is a very intricate issue and 
depends on a set of criteria including type of problem, degree 
of optimization, time and cost constraints, number of factors 
under investigation and their interactions, the possible 
presence of identifiable and non-identifiable extraneous 
factors, ease of understanding and implementation, complexity 
of using each design, required training, statistical validity and 
robustness of approach, etc. [15,16]. Designing experiments 
presents more advantages such as reducing time, cost, 
resources, and effort than the univariate procedures that 
facilitate collecting large quantities of information while 
minimizing tedious experimental work [15]. 
   Since DFHP is affected by many factors and depends largely 
on the optimization of controlling factors, there is a need to 
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have at hand a reliable technique of DOE for optimization of 
various controlling factors that can help facilitate a better 
understanding of individual and interactive effects of each 
factor on hydrogen production. The present study covers the 
conventional experimental design methods related to DFHP 

that are currently employed to study the effect of key factors 
on dark fermentation. An appropriate DOE method can be 
used to find optimum conditions for maximizing hydrogen 
yield (HY) and hydrogen production rate (HPR). 

 

 
Figure 1. DOE methods. 

 
2. DOE METHODS 

2.1. Screening stage 

2.1.1. Two levels full or fractional factorials 

A factorial approach is classified into full and fractional 
factorial design. A full factorial design (FFD) consists of all 
possible combinations of factor levels to investigate the effect 
of the factors on a response simultaneously. In this approach, 
the total number of experiments for studying k factors, each at 
L levels, is Lk and for various levels (L1, L2, …, Ln) is obtained 
by multiplication of levels (L1× L2× …× Ln). All interactions 
between factors are investigated in the FFD [17]. Frequently, 
experimenters do not have adequate time, cost, and resources 
to perform full factorial experiments [10]. The partial 
(fractional) factorial design (PFD) is used when the number of 
experiments of FFD is too large, which was first presented by 
Finney in 1945 [18]. PFD investigates the effect of factors on 
a response under an economical condition. A PFD is generally 
represented in the form of Lk-p, where k, L, and 1/Lp are the 
number of factors, levels, and the fraction of the full factorial 
Lk, respectively. The two levels full and fractional factorials 
are mainly used for screening the key factors, where the total 
number of experiments for k factors is 2k and 2k-p, respectively 
[19]. The number of experiments of 2k and 2k-p is given in 
Table 1. PFD does not enable the estimation of all major and 
interaction effects separately because some of them are 
estimated together [15]. 
   Some of the studies on screening stage for dark fermentative 
hydrogen production are summarized in Table 2. Rasdi et al. 
[20] employed two-level FFD for the initial screening of the 
most influential variables, namely substrate concentration, pH, 
inoculum size, and heat treatment for hydrogen production 
from palm oil mill effluent. They illustrated that according to 
the 24 design, chemical oxygen demand (COD) of POME and 
pH significantly influenced hydrogen production. The factors 
with p-values less than 0.05 are considered significant, 
whereas values greater than 0.05 are insignificant. A CCD 
was applied after a two-level FFD to optimize selected 
variables. The preliminary screening of temperature, initial 
pH, inoculum size, and COD by two-level FFD was carried 

out by Ismail et al. [21] and, later, CCD optimization for 
hydrogen production from food wastes was used. The results 
of 24 design showed that initial pH and temperature were 
selected as the most critical variables on hydrogen production 
individually and interactively. 

 
Table 1. Comparison of the numbers of experiments of 2k and 2k-p (2 

levels, k factors) design. 

 
Factors 

Reduced 
fraction (1/2p) 

Numbers of 
experiments 

in 2k 

Numbers of 
experiments in 

2k-p 
6 1/2 26=64 26-1=32 
6 1/4 26=64 26-2=16 
6 1/8 26=64 26-3=8 
6 1/16 26=64 26-4=4 
5 1/2 25=32 25-1=16 
5 1/4 25=32 25-2=8 

 
2.1.2. Plackett-Burman design 

Plackett-Burman design, which is a two levels design, is a 
useful alternative to a 2k-p design and was introduced by 
Plackett and Burman in 1946 [22]. Method of BPD has been 
extensively used to screen a large number of factors for 
further investigations [23]. Generally, a first-order polynomial 
model as observed in Eq. (1) is applied to study experimental 
results of PBD, where y, 0β , iβ , and Xi are the response, 

constant, linear coefficient, and coded factor, respectively 
[24]. The number of runs (N) of PBD for studying k factors is 
N = (k + 1), which is equal to a multiple of 4 for a PBD [25]. 
The design have runs of 12, 20, 24, 28, etc. PBD method has 
one major drawback, that is to say, the interactions between 
factors are ignored [26]. 

∑
=

+=
k

i
ii xy

1
0 ββ                                                                           (1) 

   Costa et al. [27] used PBD for the screening of eleven 
variables of glycerol, peptone, yeast extract, temperature, 
initial pH, K2HPO4, KH2PO4, NH4Cl, (NH4)2SO4, 
FeSO4.7H2O, and MgSO4.7H2O for hydrogen production by 
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Klebsiella pnemoniae BLb01 from residual glycerol from 
biodiesel plant. According to the PBD, nine variables present 
the most significant effect on hydrogen production. The 
factors having the important effect on hydrogen production (p-
value < 0.05) were then detected through a 2-level FFD. Six 
factors of initial pH, temperature, glycerol, KH2PO4, K2HPO4, 
and yeast extract were investigated by 2-level FFD and the 
other three factors were fixed in their optimal values. 
According to the  26-2 FFD, three factors of KH2PO4, K2HPO4, 
and temperature were considered as key factors. Then, the 
level of three factors was optimized by CCD. Jiang et al. [28] 
studied hydrogen production from glucose by Clostridium 
butyrium. The variables include concentration of glucose, 
K2HPO4, KH2PO4, yeast extract, tryptone, L-cysteine, 
MgSO4·7H2O, and FeSO4·7H2O were investigated in 12 
experimental runs by PBD. The results of PBD screening 
indicated that yeast extract and glucose concentration were 
statistically significant in the hydrogen production. After 
PBD, the CCD method was carried out to identify optimal 
values of the level of two factors. Varrone et al. [29] 
investigated the effect of five factors of temperature, tryptone, 
glycerol concentration, initial pH, and yeast extract on the 
dark fermentation by PBD. Based on PBD, temperature, 
glycerol concentration, and initial pH were considered as 
important factors. The temperature and initial pH indicated a 
positive effect on HY, while the concentration of glycerol 
showed a negative effect. BBD was then carried out for the 
optimization of level of key factors. The techniques of PBD 

and BBD were used to screen important factors and identify 
the optimal condition of hydrogen production by 
Ethanoligenens harbinense B49. Initial screening of factors of 
K2HPO4, ZnSO4. 7H2O, NaCl, MgCl2, FeSO4.7H2O, and 
CaCl2.2H2O by PBD for hydrogen production was performed 
by Guo et al. [30]. The results of 12 experimental runs of PBD 
showed that MgCl2 and FeSO4.7H2O significantly affected 
hydrogen production. Then, BBD was used to identify optimal 
values that promoted maximum hydrogen production. The 
methods of PBD followed by CCD were employed to screen 
the key factors and optimize their levels by Boonsayompoo et 
al. [31]. Six factors of FeSO4, CaCl2, peptone, MgCl2, NiCl2, 
and NaHCO3 were screened by PBD in 12 experimental runs. 
The results indicated that hydrogen production from the sweet 
sorghum bagasse by thermoanaerobacterium 
thermosaccharolyticum KKU19 was affected by key factors 
of FeSO4, CaCl2, MgCl2, and NaHCO3. Pan et al. [32] studied 
the effects of eight factors of glucose, yeast extract, initial pH, 
peptone, FeSO4, phosphate buffer, mineral salt solution, and 
vitamin solution, on DFHP by PBD in 12 experimental runs. 
The screening results showed that glucose, phosphate buffer, 
and vitamin solution had individual significant effect on 
DFHP. The optimal key factor level and effect of their 
interactions on production of hydrogen were further 
investigated by BBD. The application of PBD for screening 
the most important factors of DFHP by some researchers is 
reported in Table 2. 

 
Table 2. Studies of screening stage on DFHP. 

Inoculum Substrate Design Studied factors Ref. 
Heat-treated palm oil mill sludge Palm oil mill 

effluent 
2-FFD (24) Substrate concentration, pH, inoculum size, heat 

treatment 
[20] 

Heat-treated palm oil mill sludge Food wastes 2-FFD (24) Initial pH, temperature, inoculum size, COD [21] 

Klebsiella pneumoniae BLb01 Residual glycerol 
from biodiesel 

plant 

2-PFD (26-2) Glycerol, initial pH, temperature, yeast extract, KH2PO4, 
K2HPO4 

[27] 

Klebsiella pneumoniae BLb01 Residual glycerol 
from biodiesel 

plant 

PBD Glycerol, initial pH, temperature, K2HPO4, KH2PO4, 
(NH4)2SO4, peptone, MgSO4·7H2O, NH4Cl, yeast 

extract, FeSO4·7H2O 

[27] 

Clostridium butyrium Glucose PBD Glucose, yeast extract, tryptone, K2HPO4, KH2PO4, L-
cysteine, MgSO4·7H2O, FeSO4·7H2O 

[28] 

Mixed culture Glycerol PBD Temperature, glycerol concentration, initial pH, tryptone, 
yeast extract 

[29] 

Ethanoligenens harbinense B49 Glucose PBD K2HPO4, Mg Cl2, FeSO4·7H2O, NaCl, ZnSO4.7H2O 
CaCl2.2H2O 

[30] 

Clostridium sp. Fanp2 Glucose PBD Glucose, yeast extract, initial pH, peptone, FeSO4, 
phosphate buffer, mineral salt solution, vitamin solution 

[32] 

Enterobacter aerogenes MTCC 
111 

Glucose PBD Yeast extract, tryptone, initial pH, glucose, ferric 
chloride, inoculum size 

[33] 

Enterobacter MTCC 7104 Glucose, sucrose 
and xylose 

PBD Yeast extract, sucrose, initial pH, peptone, tryptone, 
xylose and glucose 

[34] 

Heat-treated sludge Sweet sorghum 
syrup 

PBD Peptone, initial pH, sodium bicarbonate, total sugar, 
nutrient solution, iron (II) sulphate (FeSO4) 

[35] 

Enterobacter aerogenes Glucose and 
glycerol 

PBD Temperature, initial pH, yeast extract, tryptone, glycerol, 
glucose, agitation rate, inoculum size 

[36] 

Thermoanaerobacterium 
thermosaccharolyticum KKU19 

Sweet sorghum 
bagasse 

PBD Peptone, FeSO4, CaCl2, NaHCO3, NiCl2, MgCl2 [31] 

E. coli Formate PBD Formate, cell density, yeast extract, NaCl, tryptone, 
stirring speed 

[37] 

Mixed culture Pineapple waste 
extract 

PBD Substrate concentration, initial pH FeSO4, NaHCO3, 
endo–nutrient 

[38] 

Mixed culture Cow manure slurry Taguchi Temperature, pH, substrate concentration, agitation, 
ultrasound, KH2PO4 

[39] 
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2.2. After screening: Method of steepest 
ascent/descent 

The technique of steepest ascent/descent is applied to identify 
the region that contains the optimum operating conditions 
[40]. The variables screened by the screening methods can be 
further studied using steepest ascent/descent method. This 
approach is a simple and efficient method [24]. 
   As presented in Table 3, the steepest ascent technique was 
applied by researchers after screening the most important 
factors of DFHP. Varrone et al. [29] employed the steepest 
ascent method after PBD to determine the design center of key 

factors of initial pH, glycerol concentration, and temperature 
for dark fermentation. The path of steepest ascent was used to 
find the best starting point of two critical factors of HRT and 
pH by Lay et al. [41]. After screening of key factors by PBD, 
Boonsayompoo and Reungsang [31] determined the proper 
direction of changing the concentration of key factors, CaCl2, 
MgCl2, FeSO4, and NaHCO3, by the path of steepest ascent for 
DFHP. Experimental results showed that the steepest ascent 
technique was an effective method to determine region of 
optimal levels. However, the optimal values of factors need to 
be determined by the following optimization methods. 

 
Table 3. Studies after screening stage (before optimization) by steepest ascent method in dark fermentation. 

Inoculum Substrate Studied factors Ref. 
Clostridium sp. Fanp2 Glucose Glucose, vitamin solution, phosphate buffer [32] 
Clostridium butyrium Glucose Glucose, yeast extract [28] 

Mixed culture Glycerol Glycerol concentration, initial pH, temperature [29] 
Heat-treated sludge Sweet sorghum syrup Initial pH, FeSO4, total sugar [35] 

Enterobacter MTCC 7104 Xylose Xylose, initial pH, and peptone [34] 

Enterobacter sp. CN1 Xylose Xylose, FeSO4, peptone [42] 
Thermoanaerobacterium 

thermosaccharolyticum KKU19 
Sweet sorghum 

bagasse 
FeSO4, MgCl2, CaCl2, NaHCO3 [31] 

Anaerobic digested sludge Starch pH and HRT [41] 
 
2.3. Optimization stage 

2.3.1. One factor at a time design 
The one factor at a time approach studies just one factor at a 
time while keeping the levels of the other factors constant 
[13]. The OFAT approach consists of selecting a baseline set 
of levels of each factor and changing each factor over its 
favorable range, while keeping the other factors constant at 
the baseline level [43]. The OFAT design is simple and easy. 
The technique has some major drawbacks, that is to say (a) 
interactions between factors are ignored, (b) the optimum can 
be missed, especially when the interactions among factors are 
significant, and (c) it presents a relatively large number of 
runs, is susceptible to high cost, and takes long time to 
perform especially when the number of factors is large 
[25,44]. 

   There are a large number of studies available in the 
literature on OFAT method for dark fermentation, a few of 
which are reported in Table 4. Satar et al. [45] studied the 
effect of glucose concentration, feed flow rate, and 
fermentation time with around 20 runs on DFHP by 
Enterobacter aerogenes ATCC 13048 using OFAT design. 
Each time, only the effect of one factor on HY was studied 
and the levels of other factors were kept constant. Results 
showed that the optimal glucose concentration, feed flow rate 
and retention time were 8 g/L, 0.5 mL/min, and 24 h, 
respectively. In optimal conditions, hydrogen yield was 9.44 
mmol/g glucose. The method of OFAT design was performed 
to study the effect of four factors of initial pH, starch, 
nitrogen, and iron concentration on DFHP from starch. The 
optimum pH, concentration of iron, nitrogen, and starch were 
calculated as 7–8, 10 mg/L, 5.64 g/L, and 15 g/L, respectively. 
Hydrogen yield in optimum conditions was reported as 178 
mL/g starch [46]. 

 
Table 4. Studies in optimization stage on DFHP. 

Inoculum Substrate Design Studied factors Ref. 
Wasted activated sludge Sucrose Taguchi Three phosphate sources, three carbonate sources, and 

a nutrient formulation 
[92] 

Wasted activated sludge Sucrose Taguchi Concentration of 13 nutrients [93] 
Pseudoalteromonas sp. BH11 Glucose Taguchi Glucose, yeast extract, sea water, tryptone [94] 

Thermoanaerobacterium 
thermosaccharolyticum IIT 

BTST1 

Glucose Taguchi Temperature, pH, glucose, FeSO4, yeast extract [49] 

Cow dung Glucose Taguchi C/N ratio, pH, temperature, yeast extract [50] 
Wastewater Potato starch Taguchi Ultrasonic frequency, energy, exposure time, starch 

concentration 
[95] 

Mixed consortia Glucose and  xylose Taguchi Glucose: xylose ratio, pH, inoculum size, and 
inoculum age 

[96] 

Mixed culture Cane molasses Taguchi pH, recycle ratio, dilution rate [97] 
Mixed culture Wastewater Taguchi Inoculums, pre-treatment, inlet pH and feed 

composition 
[98] 

Municipal wastewater Xylose 3-PFD (3k-p) pH, oleic acid concentration, biomass concentration [55] 
Brewery wastewater Steam exploded corn 

stalk liquor 
3-PFD (3k-p) Temperature, pH, HRT [54] 
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Thermoanaerobacterium 
aotearoense SCUT27/Δldh 

Sugarcane bagasse 3-FFD (3k) Sulfuric acid concentration, treatment time [99] 

E. coli (DJT 135) Formate 3-FFD (3k) Substrate concentration, pH [56] 
Anaerobic sludge Renewable waste Simplex Corn stalk, Bean husk, organic fraction of solid 

municipal waste 
[80] 

Buffalo dung compost Renewable agri-waste Simplex Corn husk, ground nut shell, rice husk [79] 
Mixed culture Co-digestion Mixture Simplex Cheese whey, crude glycerol, buffalo slurry [81] 
Mixed culture Agricultural wastes Simplex Food waste, potato pulp, cattle manure, and pig 

manure 
[100] 

Mixed culture Glucose D-optimal Substrate concentration, compost leachate 
concentration 

[73] 

E. coli (XL1-BLUE) Formate OFAT Formate concentration [37] 
Clostridium acetobutylicum X9 

and Ethanoigenens harbinense B2 
Cellulose OFAT Substrate concentration, initial pH, C/N ratio, L-

cysteine concentration, incubation time 
[101] 

Wastewater sludge Sucrose OFAT Gas reflux, liquid reflux [102] 
Fermentative bacteria B49 Glucose OFAT Magnesium concentration, iron concentration, 

sparging gas type 
[103] 

Mixed culture Starch OFAT Nitrogen concentration, iron concentration, initial pH, 
substrate concentration 

[46] 

Escherichia coli MC13-4 Glucose OFAT Immobilized gel bead size [104] 
Enterobacter aerogenes ATCC 

13048 
Glucose OFAT Glucose, feed flow rate, fermentation time [45] 

Clostridium thermolacticum Lactose OFAT Dilution rate and pH [105] 
Mixed culture Citric acid 

wastewater 
OFAT Organic loading rate [106] 

Clostridium sp. Fanp2 Glucose BBD Glucose, phosphate buffer, vitamin concentrations [32] 
Mixed culture Glycerol BBD Glycerol concentration, initial pH, temperature [29] 

Enterobacter aerogenes MTCC 
111 

Glucose BBD Substrate concentration, initial pH, ferric chloride  

Heat-treated sludge Sweet sorghum syrup BBD Initial pH, FeSO4, total sugar [35] 
Thermoanaero bacterium 

thermosaccharolyticum IIT 
BTST1 

Glucose BBD Temperature, pH, glucose, FeSO4, yeast extract [49] 

Anaerobic sludge Bean husk, corn stalk, 
solid municipal waste 

BBD Substrate concentration, HRT, pH, temperature [80] 

Mixed culture Synthetic food waste BBD Initial pH, linoleic acid concentration, initial COD 
concentration 

[60] 

Ethanoligenens harbinense B49 Glucose BBD Glucose concentration, FeSO4. 7H2O, MgCl2 [30] 
Enterobacter aerogenes Glucose BBD Glucose concentration, pH, temperature [107] 

Clostridium tyrobutyricum JM1 Glucose BBD Glucose concentration, pH, temperature [108] 
Escherichia coli DJT135 Glucose BBD Glucose concentration, pH, temperature [109] 

Mixed culture Glucose BBD Linoleic acid concentration, initial pH, number of 
glucose injections 

[110] 

Klebsiella. pneumoniae ECU-15 Glucose BBD Substrate concentration, ammonium sulfate 
concentration, trace elements concentration 

[111] 

Anaerobic sludge Dairy wastewater BBD Substrate concentration, pH, COD/N ratio, COD/P 
ratio 

[112] 

Anaerobic sludge Glucose BBD pH, microwave treatment duration, microwave 
intensity 

[113] 

Gamma irradiated sludge Glucose BBD Temperature, initial pH, substrate concentration [114] 
Brewery wastewater Steam exploded 

switchgrass liquor 
BBD pH, HRT, linoleic acid concentration [74] 

Enterobacter sp. CN1 Xylose BBD Xylose, FeSO4 , peptone [42] 
Anaerobic sludge Brewery wastewater BBD Temperature, pH, brewery wastewater concentration [115] 

Heat-treated anaerobic sludge Laminaria japonica BBD HCl concentration, heating temperature, reaction time [116] 
Klebsiella pneumoniae BLb01 Residual glycerol 

from biodiesel plant 
CCD Temperature, KH2PO4, K2HPO4 [27] 

Thermoanaerobacterium 
thermosaccharolyticum KKU19 

Sweet sorghum 
bagasse 

CCD FeSO4, MgCl2, CaCl2, NaHCO3 [31] 

Mixed culture Pineapple waste 
extract 

CCD Substrate concentration, initial pH, FeSO4 [38] 

Heat-treated anaerobic granular 
sludge 

Lactose, glucose, and 
cheese whey powder 

CCD Substrate concentration, initial pH [117] 

Clostridium acidisoli and 
Rhodobacter Sphaeroides 

Sucrose CCD Sucrose concentration, initial pH, inoculum ratio [64] 

Mixed culture Sucrose CCD Substrate concentration, initial pH [118] 
Seed sludge Sucrose CCD Ultrasonic time, density [119] 

Anaerobic sludge Wheat powder CCD C/N ratio and C/P ratio [120] 
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Mixed culture Food residues and 
manure 

CCD Temperature, HRT, N2-flow rate [121] 

Clostridium butyricum EB6 Palm oil mill effluent CCD Temperature, pH, COD of POME [122] 
Clostridium butyricum EB6 Glucose CCD Glucose concentration, pH, iron concentration [123] 
Anaerobic digester sludge Food waste with 

residual blood 
CCD HRT, total solids feed (% TS), proportion of residues 

(% Blood) 
[124] 

Anaerobic grass compost Food wastes CCD PO4
3-, Fe2+ , NH4

+  concentrations [125] 
Mixed culture Organic municipal 

solid waste 
CCD Organic municipal solid waste, pretreated anaerobic 

digestion sludge, amount of hydrogen-producing 
bacteria 

[126] 

Anaerobic digested sludge Starch CCD HRT, pH [127] 
Clostridium sp. Beer brewing 

industry wastewater 
CCD Glucose addition concentration, pH, temperature [128] 

Anaerobic sludge Sucrose CCD Substrate concentration, HRT [65] 
Cow dung compost Sucrose CCD Substrate concentration, initial pH [118] 
Anaerobic sludge Palm oil mill effluent CCD C/N ratio, C/P ratio, Fe+2 concentration [129] 
Anaerobic sludge Glucose CCD Substrate concentration, pH, temperature [130] 
Anaerobic sludge Glucose CCD Substrate concentration, pH, temperature [131] 
Anaerobic sludge Sucrose CCD Substrate concentration, pH, temperature [132] 

Mixed culture Swine manure, fruit, 
and vegetable market 

waste 

CCD HRT, substrates ratio [133] 

Lesser panda manure Corn stalk CCD Temperature, time, solid state compound enzyme [134] 
Anaerobic sludge Glycerin (standard or 

residual) 
CCD pH, glycerin concentration, volatile suspended solids [135] 

Mixed culture Cow manure slurry CCD pH, temperature [39] 
Anaerobic sludge Sugarcane bagasse 

hydrolysate 
CCD Substrate concentration, substrate: buffer ratio, 

inoculum: substrate ratio 
[136] 

Escherichia coli WDHL Wheat straw 
hydrolysate 

CCD Temperature, pH, total reducing sugars [137] 

Clostridium butyrium Glucose CCD Glucose, yeast extract [28] 
Anaerobic sludge Glucose CCD pH and autoclave [138] 

Anaerobic hydrogen producing 
bacteria 

Starch CCD Starch concentration , ferrous iron concentration, L-
cysteine concentration 

[139] 

Clostridium pasteurianum Crude glycerol CCD Temperature, initial pH, glycerol concentration [140] 
Granular sludge Cassava’s stillage CCD Initial pH, MoO4

-2 concentration [141] 
Digested anaerobic granular 

sludge 
Glucose CCD Glucose concentration, initial pH, nickel nanoparticles 

concentration 
[142] 

Heat-treated POME sludge Palm oil mill effluent CCD Substrate concentration, pH [20] 
Enterobacter MTCC 7104 Xylose CCD Xylose concentration, initial pH, peptone 

concentration 
[34] 

Mixed culture Waste glycerol and 
sludge 

CCD Waste glycerol concentration, sludge concentration, 
and amount of Endo-nutrient addition 

[143] 

Mixed culture Sugar refinery 
wastewater 

CCD pH, HRT, organic loading rate [63] 

Anaerobic seed sludge Food waste CCD Inoculums concentration, substrate concentration, 
citrate buffer concentration 

[144] 

Anaerobic sludge Starch CCD Starch concentration, Fe, Ni [145] 

Anaerobic seed sludge Palm oil mill effluent CCD Substrate concentration, initial pH, temperature, 
inoculum volume 

[146] 

Anaerobic activated sludge Sugar refinery 
wastewater 

ANN VLR, ORP, pH, alkalinity [147] 

Sewage sludge Sucrose ANN HRT, sucrose concentration, sucrose degradation, 
biomass concentrations, ethanol, acetate, propionate 
and butyrate concentrations. ORP, pH, recycle ratio, 

alkalinity 

[148] 

Enterobacter MTCC 7104 Xylose ANN Xylose concentration, initial pH, peptone 
concentration 

[34] 

E. coli Cheese Whey ANN ORP, pH, dissolved CO2 [149] 
Thermal preheated sludge Starch ANN Organic loading rate, pH, VSS yield [150] 

Mixed culture Thin stillage, glucose, 
sucrose 

ANN Initial pH, substrate concentration, temperature, 
maximum fermentation time, biomass concentration 

[87] 

Buffalo dung compost Glucose and xylose ANN-GA Inoculum age, inoculum size, pH, glucose: xylose 
ratio 

[91] 

Anaerobic digested sludge Glucose ANN-GA Temperature, pH, substrate concentration [151] 
Anaerobic digested sludge Sucrose ANN-GA Organic loading rate, HRT, influent alkalinity [152] 
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2.3.2. Taguchi design 

The Taguchi design was applied in screening and optimization 
stages, which was introduced by Genechi Taguchi in the 
1950s [16]. In this approach, the application of orthogonal 
array reduces the number of runs [23]. The Taguchi approach 
can recognize key factors and best level of a factor from a pre-
determined number of levels. However, the actual optimal 
value of the level of a factor cannot be determined using this 
approach. This problem can be modified using techniques 
such as neural network [16]. The technique can help reduce 
the number of experiments significantly and minimize the 
operational time and cost [47]. Naturally, it is susceptible to 
several limitations, that is, it is only effective when employed 
in the early design of process or product. If the design 
variables and their nominal values are determined, Taguchi 
method may not be cost effective. This approach may not be a 
proper choice for a continuous variable. Also, the method is 
not always accurate and actual optimal factor levels may not 
be guaranteed [48]. The number of experiments covered by 
Taguchi techniqe is reported in Table 5. 
   Wang et al. [39] carried out screening of factors with 
Taguchi method followed by CCD optimization. They used 
the Taguchi design L18 orthogonal array to screen variables of 
temperature, pH, substrate concentration, agitation, 
ultrasound, and KH2PO4 at three levels.The results indicated 
that temperature and pH were selected as key factors. Roy et 
al. [49] studied the effect of glucose concentration, 
temperature, pH, yeast extract concentration, and FeSO4 at 
three levels by the Taguchi technique. A L27 orthogonal array 
with three degrees of freedom was applied to evaluate the 
effect of factors on DFHP by Thermoanaerobacterium 
thermosaccharolyticum IIT BT-ST1. According to Taguchi 
method, temperature was found as the most important variable 
followed by pH and glucose concentration. The effect of 
factors of temperature, yeast extract concentration, substrate 

concentration, pH, and carbon to nitrogen (C/N) ratio on 
hydrogen production using cow dung was investigated with 
Taguchi design by Kumari and Das [50]. Statistical analysis 
indicated that the C/N ratio was the essential factor in 
hydrogen production. The similar studies are reported in Table 
4. 

 
Table 5. Number of experiments of Taguchi techniqe. 

Number of 
factors 

Number of levels 
2 3 4 5 

2 L4 L9 L16 L25 
3 L4 L9 L16 L25 
4 L8 L9 L16 L25 
5 L8 L18 L16 L25 
6 L8 L18 L32 L25 
7 L8 L18 L32 L50 
8 L12 L18 L32 L50 
9 L12 L18 L32 L50 

10 L12 L27 L32 L50 
 
2.3.3. Response surface methodology 

The response surface methodology (RSM) is a collection of 
the mathematical and statistical methods that are useful for the 
optimization of an interest response, which is affected by 
several factors [51]. The RSM techniques of three levels full 
or fractional factorial, central composite design, Box-Behnken 
design, Doehlert design, simplex design, and optimal design 
are widely used in the optimization stage. Finding a suitable 
relation between the response and the factors for the RSM 
methods is necessary. Generally, a linear polynomial model 
(first-order: Eq. (1)) or quadratic polynomial model (second-
order: Eq. (2)) is used to explain the effect of key variables on 
a response [52]. 

 
Table 6.Comparison of the efficiency of 3- FFD, CCD, BBD, and DD [53]. 

Factors (K) Number of 
coefficients 

Number of experiments Efficiency 
3- FFD CCD BBD DD 3- FFD CCD BBD DD 

2 6 9 9 - 7 0.67 0.67 - 0.86 
3 10 27 15 13 13 0.37 0.67 0.77 0.77 
4 15 81 25 25 21 0.18 0.60 0.60 0.71 
5 21 243 43 41 31 0.09 0.49 0.61 0.68 
6 28 729 77 61 43 0.04 0.36 0.46 0.65 
7 36 2187 143 85 57 0.02 0.25 0.42 0.63 
8 45 6561 273 113 73 0.0069 0.16 0.4 0.62 

 
   The efficiency of an experimental design is defined as the 
number of coefficients in the estimated model divided by the 
number of runs. It is concluded from Table 6 that the 
efficiency DD> BBD> CCD> 3-FFD [53]. However, it is seen 
that CCD is extensively applied to optimization. 

y = β0 + ∑ βik
i=1  xi + ∑ βii xi2 +  ∑ ∑βijxixjk

i<j
k
i=1 + ε                 (2) 

 
2.3.3.1. Three levels full or fractional factorial design 

The full and fractional factorial designs with three levels (−1, 
0, +1) are used to study quadratic effects and are mainly 
applied in the optimization stage. The total number of 
experiments for k factors is 3k and 3k-p in the 3-FFD and 3-
PFD, respectively. A 3k or 3k-p design might need too many 
runs, depending on the values of k and p [18]. Since the 
factorial design for more than two factors requires a 

considerable number of experiments, designs those offer a 
smaller number of runs such as the BBD, CCD, and DD are 
applied more often. 
   After screening key factors (pH, HRT, and temperature), a 
3-PFD was employed by Shanmugam et al. [54] to optimize 
hydrogen production from lignocellulosic biomass. A 33−1 

analysis indicated that the hydrogen yield was affected by all 
the experimental variables. However, the effect of temperature 
was greater than HRT and pH. Chaganti et al. [55] 
investigated the effect of pH, concentration of oleic acid 
(OA), and biomass on DFHP from xylose by a 3-PFD. 
According to a 33−1 design, the terms of linear and quadratic 
OA and pH were significant, and the concentration of biomass 
was insignificant. A 3-FFD (32) was applied by Bakonyi et al. 
[56] to determine the optimum conditions of two operational 
variables (pH and substrate concentration) to obtain maximum 



F. Boshagh and Kh. Rostami / JREE:  Vol. 7, No. 2, (Spring 2020)   27-42 
 

34 

hydrogen yield from formate by both strains of E. coli (XL1- 
BLUE) and E. coli (DJT 135). The total number of 12 
experimental runs (including 3 replications in the center point) 
were performed for both strains of wild-type and metabolic 
engineering. The results showed that pH and formate 
concentration were statistically important. However, the effect 
of formate concentration was much higher than pH. 
 
2.3.3.2. Box-Behnken design 

The Box-Behnken approach is a class rotatable (or nearly 
rotatable) second-order design [57], introduced by Box and 
Behnken in 1960 [58]. The BBD is based on three levels (-1, 
0, +1) fractional factorial design and can be applied to 
problems having three or more factors. The number of 
required experiments in this design is 2k (k−1) + nc, where k 
and nc are the number of factors and central points, 
respectively [57]. The technique is more efficient and 
economical in terms of the number of required experiments 
and is a spherical design with all points lying on a sphere of 
radius 2. The BBD does not require any run where all factors 
are simultaneously at their highest or lowest levels. Therefore, 
this design can be considered appropriate when unsatisfactory 
results occur at the extreme points of the experimental region 
[59]. 
   As presented in Table 4, many research studies have 
employed BBD to optimize DFHP from various substrates. 
Having performed initial screening by PBD, Long et al. [42] 
applied BBD in 15 runs of experiment to optimize the most 
important operational variables of concentration of substrate, 
FeSO4, and peptone on hydrogen production from xylose 
using Enterobacter sp. CN1. The results show the initial 
concentration of xylose and FeSO4 and their substantial effect 
on hydrogen production, while peptone remains unaffected. 
Under the optimal medium condition, hydrogen yield of 2 mol 
H2/mol xylose was obtained. The effects of individual and 
interaction of three key factors, namely concentration of 
linoleic acid (LA), initial pH, and chemical oxygen demand 
(COD), on DFHP using a BBD in 13 runs of experiments 
were studied by Pendyala et al. [60]. The results indicated that 
pH, concentration of LA, COD, and their interactions affected 
hydrogen production. A PBD followed by BBD was 
performed to screen important parameters and identify the 
optimal value of key factors, glucose concentration, Mg2+, and 
Fe2+, in dark fermentation by E. harbinense B49. According to 
17 runs of experiment of BBD, optimal concentrations were 
obtained and, under the optimal condition, HY was 2.2 
mol/mol glucose. Among the studied factors, Mg2+ and Fe2+ 

had significant individual effect, while their interactions were 
no significance [30]. 
 
2.3.3.3. Central composite design 

The central composite design is a favorite class of 
experimental design and is employed for fitting the second-
order model that was introduced by Box and Wilson in 1951 
[40]. The CCD investigates each factor at five levels (-α, −1, 
0, +1, + α), where α is the distance of the axial runs from the 
design center. The number of experiments in this design is 
2k+2k+nc, where k and nc are the number of factors and 
central points, respectively [61]. Two variables of α and nc in 
this design must be determined [53]. Generally, three to five 
center runs are suggested. α value depends on the number of 
factors and can be calculated by α =20.25k ,where for two, 
three, and four factors is 1.41, 1.68, and 2, respectively [62]. 

Hydrogen production in an anaerobic sequencing batch 
bioreactor was optimized using CCD by Won et al. [63]. 
Three operational variables (pH, HRT, and OLR) were studied 
in 18 experimental runs. Results showed that HRT had lower 
significant effect on hydrogen production than pH and OLR, 
whereas OLR had much effect on hydrogen production rate. A 
CCD after PBD screening was used to evaluate the effects of 
the most important variables, namely sucrose concentration, 
inoculum ratio, and initial pH, on hydrogen production by co-
culture of Clostridium acidisoli and Rhodobacter sphaeroides. 
According to 15 experimental runs, all of the key factors 
individually affected hydrogen yield, and pH and sucrose 
concentration interacted interdependently [64]. Zao et al. [65] 
employed CCD to evaluate both interactive and individual 
effects of HRT and sucrose concentration on DFHP from 
sucrose. The results indicated that under optimum conditions, 
HY of 1.62 mol H2/mol hexose was obtained. Both HRT and 
sucrose concentration present a significant individual effect on 
hydrogen yield. However, their interactions have no 
significant effect on the hydrogen yield. There are many 
reports available in the literature on the application of CCD to 
optimize hydrogen production from various substrates, as 
depicted in Table 4. 
 
2.3.3.4. Dohlert design 

An advantage of experimental design for second-order models 
is the uniform shell design, introduced by Doehlert in 1970. 
Dohlert design is polyhedron based on hyper triangles with a 
hexagonal structure in the simplest case [66]. The number of 
experiments in this design is k2 + k + nc, where k and nc are 
the number of factors and central points, respectively. Unlike 
CCD and BBD, Dohlert design is neither orthogonal nor 
rotatable [67] and has more advantages than CCD and BBD 
such as DD requires less number of experiments [12]. As 
shown in Table 7, a DD presents different number of levels 
for all factors, which is an interesting property. Thus, the 
factors that are considered more important can be measured at 
more levels [67]. Another attractive feature of DD is the 
possibility of introducing new factors during an experimental 
design without losing the runs already performed [53]. As 
seen in Figure 2, it is also feasible to displace the experimental 
region to another place. To the best of our present knowledge, 
Dohlert design has not been used to meet the objective of dark 
fermentation to date. 

 

 
Figure 2. Displacement ability of Dohlert design [14]. 
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Table 7. Number of levels of DD generated for two to six factors 
[53]. 

Factors Number of levels of factors 
2 3,5 
3 3,7,5 
4 3,7,7,5 
5 3,7,7,7,5 
6 3,7,7,7,7,5 

 
2.3.3.5. Optimal design 

Typically, there is a standard response surface design such as 
CCD and BBD, provided that the experimental region is a 
cube or a sphere. However, sometimes, an experimenter 
encounters a situation where a standard response surface 
design may not be the best choice [6]. A certain approach to 
handling the irregular experimental region is using creation of 
computer-aided optimal design. The optimal designs represent 
a class of DOE, which is optimal with respect to some 
statistical criteria. The designs are particularly useful when the 
factor space is not uniformly accessible, qualitative factors 
have more than two levels, and so on. In optimal designs, the 
best sets of experiments are chosen based on some criteria. 
There are several popular designs related to optimality criteria 
such as A-optimality, G-optimality, E-optimality, D-
optimality, and so on, where the D-optimality is the criterion 
that receives the most attention in the literature among them 
[68,69]. A design is expressed as D-optimal if |(X XT)-1| is 
minimized, where X is the matrix of design points and T 
denotes the transpose [70]. The D-optimal designs are used for 
multi-factor experiments with both quantitative and qualitative 
factors, while the factors can be studied at a mixed number of 
levels [71]. The number of experiments of D-optimal is lower 
than FFD and PFD. The design can be considered very 
efficient if its efficiency is 0.8, 0.9 or higher [72]. 
   Liu et al. [73] used D-optimal method to find optimal 
operating conditions for DFHP from the co-fermentation of 
glucose and leachate by anaerobic sludge. The results showed 
that the HY was affected by the glucose concentration and 
organic loading of leachate. According to a two-factor D-
optimal design, the cubic model was suggested and a 
hydrogen yield of 1.6 mol H2/ mol glucose was predicted at 
6174.93 mg/L glucose and 3383.20 mg COD/L leachate. D-
optimal design is also applicable to the validation stage. A 
validation study was carried out for variables of temperature, 
pH, and HRT by the D-optimality procedure after a 3-PFD 
design. The index of D-optimality is between 0 and 1, where a 
value closer to 1 shows a completely favorable solution. In the 
validation study, the value of D-optimality of 1 was obtained 
with a HY of 100 mL/g TVS at 9.5 h HRT, pH 4.5, and 53 ºC  
[54]. Veeravalli et al. [74] employed D-optimality analysis to 
perform the validation of optimal level for the three factors of 
HRT, pH, and LA after BBD. Results of D-optimality showed 
that maximum hydrogen yield was 99.86 mL H2/g TVS at 
HRT 10 h, pH 5, and LA concentration of 1.75 g/L. 
 
2.3.3.6. Simplex method (mixture designs) 

The Nelder-Med simplex design proposed by John Nelder and 
Roger Mead (1965) is used for performing nonlinear 
unconstrained optimization [75] and is different from the 
simplex of Dantzig for linear programming [76]. A Nelder-
Mead simplex has a geometric shape with k+1 corners, where 
k is the number of factors. As illustrated in Figure 3- (a) and 

(b), a simplex is an equilateral triangle and tetrahedron in two 
and three dimensions, respectively [26]. The simplex is a 
stepwise technique by which the runs are carried out one by 
one. The direction for improvement is obtained by moving 
away from the vertex with the smallest value [77]. The 
principles for a simplex optimization with two factors are 
illustrated in Figure 3-(c). Further application of the simplex 
optimization is employed to investigate the effects of mixture 
components on the variable of response. The total amount of 
components is kept constant (100 %) in the mixture designs. 
There are several different types of mixture designs where 
simplex lattice and centroid are the most common ones [78]. 
The contour plot of simplex lattice design is depicted in 
Figure 3-(d). 
   Prakasham et al. [79] studied hydrogen production from 
buffalo dung compost with untreated mixed renewable agro-
residues. Corn husk (CH), ground nut shell (GNS), and rice 
husk (RH) were used as the substrate sources of agri-residues. 
A mixture design demonstrated that a partial supplementation 
of rice husk or ground nut shell to corn husk enhanced 
hydrogen yield. Maximum hydrogen production of 65.78 mL 
H2/ g TVS with a 70:16:12 (CH: RH: GNS) without any 
material treatment was determined. A simplex design was 
applied by Sekoai et al. [80] to obtain the optimum 
proportions of agro-municipal waste (corn stalk (CS), bean 
husk (BH), and organic fraction of solid municipal waste 
(OFSMW)). The results indicated that the optimum hydrogen 
production was observed at a ratio of 30: 0: 0 (OFSMW: BH: 
CS) without any material treatment or at a ratio of 15: 15: 0 
(OFSMW: BH: CS) in optimum conditions of the process. 
Marone et al. [81] reported hydrogen production from 
different substrate mixtures, namely cheese whey (CW), 
buffalo slurry (BS), and crude glycerol (CG). Mixture design 
was employed to determine the optimal three-substrate 
composition and distinguish the effect of the mixing ratio on 
the hydrogen yield. The optimum hydrogen production was 
obtained at a ratio of 66:33:0 (BS: CW: CG). 

 

 
Figure 3. Simplex designs in two dimensions (a) and three 

dimensions (b), illustration of a simplex optimization with two 
factors (c), contour plot of simplex lattice design (d) [52, 77]. 

 
2.3.4. Artifical neural networks 

An artifical neural network (ANN), introduced by Rosenblatt 
(1959) and Widrow and Hoff (1960) [82], simulates the 
brain’s learning process by mathematically modeling the 
network structure of interconnected nerve cells. As depicted in 
Figure 4, the configuration of an ANN consists of an input 
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layer, one or more hidden layers, and an output layer. The 
essential processing elements of ANN are called artificial 
neurons or nodes. The neurons in the hidden layer are 
connected to the neurons in the input and output layers by 
adjustable weights that enable the network to compute 
complicated associations between the factors and response. 
The input of each neuron in the hidden and output layers is 
summed up, and the activation function is applied to process 
the resulting summation. Initially, the weights are randomly 
chosen and, then, an iterative algorithm is employed to obtain 
the weights that minimize the differences between the network 
calculated and actual outputs. The application of conventional 
optimization methods including gradient-based technique to 
optimize an ANN model is complex because it is difficult to 
calculate the derivatives of the model [25,83–85]. The genetic 
algorithm (GA) as a strong optimization method was 
introduced by Holland (1975) [86], which mimics the process 
of natural evolution. The neural network coupled with genetic 
algorithm optimization model (ANN-GA) has been 
successfully employed to optimize complex processes [83]. 

 

 
Figure 4. Artificial neural network configuration, (a) operation of a 
single neuron (b) operation of a three layers (input, hidden, output) 

network [87]. 
 
   Nasr et al. [87] used a feed-forward network with back 
propagation algorithm (configuration of 5-6-4-1 layers) to 
model the profile of hydrogen production in batch 
experiments. The input and output layers consisted of five 
neurons (biomass concentrations, substrate, initial pH, 
temperature, and time) and one neuron (hydrogen production 
with time), respectively. 60, 20, and 20 % of the data sets 
were used for training, testing, and validation, respectively. R2 
of training, testing, and validating data was observed as 0.988, 
0.996, and 0.987, respectively. Results depicted that a 
correlation coefficient of 0.976 was obtained for predicting 
the profile of hydrogen production with time. Karthic et al. 
[34] employed ANN (configuration of 3-8-1 layers) to model 
the hydrogen yield in batch experiments. The input and output 

layers were three neurons (peptone concentration, xylose 
concentration, and initial pH), and one neuron (hydrogen 
yield), respectively. Method of CCD was also applied to 
investigate the effect of the aforementioned variables. The 
modeling ability of RSM and ANN was investigated in 
predicting the HY at the estimated values of root mean square 
error (RMSE), standard error of prediction (SEP), and 
correlation coefficients (R2). The reported values of RMSE, 
SEP, and R2 of RSM and ANN showed that the accuracy of 
fitness and prediction of ANN were higher than that of RSM 
design. An ANN method can approximate all kinds of non-
linear functions including quadratic functions, whereas RSM 
is useful only for quadratic approximations [88]. It is reported 
that the ANN is a suitable method compared to the RSM 
technique in terms of the modeling and optimization of 
fermentation processes [89,90]. Prakasham et al. [91] 
employed an ANN-GA (configuration of 4-10-1 layers) to 
predict hydrogen production by mixed anaerobic consortia. 
The age and size of the inoculum, pH, and glucose to xylose 
ratio as four input parameters and HY as one output parameter 
were considered. 80 and 20 % of the data sets were applied to 
training and verification, respectively. The optimum 
conditions were obtained after performing GA evaluation of 
300 generations. After optimization, HY increased from 
325.35 to 378.29 mL/g substrate, showing an increase of 
approximately 16 %. More studies are reported in Table 4. 
 
3. DISCUSSION 

The experimental design approaches have been successfully 
employed for the optimization of dark fermentation. The dark 
fermentative hydrogen production is a complicated multi-
product process that depends on different variables. The 
optimization purpose of the DFHP process is to improve data 
analysis, design, and operation and ultimately to enhance the 
hydrogen production rate and yield. In order to optimize 
DFHP, the selection of factors and levels is more important 
and, then, choosing an appropriate experimental design 
method is necessary to fit with a mathematical function. The 
quality and accuracy of the fitted model to predict the 
experimental data is investigated by regression coefficients 
and interpreted in a response contour plot. Analysis of 
variance (ANOVA) is a collection of statistical techniques 
used to analyze the differences between group means and their 
associated procedures. ANOVA is essential to investigate the 
significance and adequacy of the model. Screening methods 
are employed for a large number of process or design 
variables to identify the most important variables that have 
significant effect on the process performance. In the case of 
the DFHP, methods such as Plackett–Burman, two levels full 
or fractional factorial, and Taguchi design are used for 
screening the key factors. The methods of Plackett–Burman 
and two levels full or fractional factorial at two levels for each 
factor are economical and efficient. When there are few 
factors, the two levels FFD can be employed for screening key 
factors. When the number of factors increases, two levels 
fractional factorial or Plackett–Burman can be used for 
screening. Further, the DFHP is followed by the steepest 
ascent/descent technique to approach the neighborhood of the 
optimal conditions. Subsequently, the optimization methods 
are applied. As illustrated in Table 8, each experimental 
design method is characterized by certain advantages and 
limitations. The OFAT was widely employed to evaluate the 
effect of various factors on DFHP. However, the technique 
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has some major disadvantages: (a) disregard for interactions 
between factors and (b) requiring a rather large number of 
experiments, being expensive, taking long time, and highly 
consuming materials. The OFAT design is always less 
efficient than other DOE methods. The literatures indicate 
that, among the RSM methods, CCD and BBD are more 
applicable than DD, simplex, D-optimal, and three levels full 
or fractional factorial for DFHP optimization. The CCD as a 
very effective method for fitting the second-order model for 
the optimization of DFHP is widely used. The application of 
BBD is often recommended owing to its economic 
advantages. The BBD and DD approaches are slightly more 
useful than CCD. However, they are more effective than the 
3-FFD and 3-PFD. The three levels factorial designs have 
limited application in DFHP when the number of factors is 
larger than two, because the number of required experiments 
for more than two factors is very large. Generally, the FFD for 
more than two factors requires a large number of experiments, 
which is not economically and practically feasible. Therefore, 
an FFD method is useful when there are few factors and levels 
involved. The reviewed papers show that there has been no 
report on the DD to date for the optimization of the DFHP. 
The DD has two attractive features (different number of levels 

for each factor and displacement ability) that provides a 
specific advantage in some studies. Thus, the DD method of 
optimization is suggested for DFHP. Some studies have 
reported on the optimization of substrate mixture with simplex 
method of optimization. In the mixture designs, the total 
amount of components is constant. The D-optimal for 
optimization and model validation has been used. An irregular 
experimental region can be handled with the D-optimal 
design. The D-optimality as a favorable index varies between 
zero (worst case) and one (ideal case). The Taguchi design for 
the screening and optimization of the DFHP has been applied. 
Taguchi approach is able to identify the key factors and the 
best level of factors from a pre-determined number of levels. 
However, the approach cannot guarantee determining the 
optimal condition. This problem can be modified using 
methods such as ANN. The ANN as a well-known technique 
to solve the complex non-linear optimization problems is an 
effective method to optimize several responses simultaneously 
and also optimize DFHP. It appears that ANN and ANN-GA 
are more suitable methods than the RSM technique for DFHP 
optimization. Although the studies of the ANN-GA, simplex, 
and D-optimal for the optimization of the DFHP are limited. 
Therefore, more studies covering these aspects are suggested. 

 
Table 8. Advantages and disadvantages of experimental design methods. 

Design method Advantages Disadvantages Application 
2-FFD  Identification of main effect and the 

interaction of factors 
 Large number of runs, time, cost, and 

consumed materials 
 Only two levels 

Screening 

2-PFD  Smaller number of runs compare to 2-FFD 
for the equal number of factors 

 Only two levels 
 Effect of interaction of factors is limited and 

may be unobserved 

Screening 

PBD  Good screening tool 
 Minimum number of required runs for large 

number of factors 

 Ignoring interactions between factors 
 Only two levels 

Screening 

OFAT  Simple and easy  Ignoring interactions between factors 
 Large number of experiments, time, cost, and 

consumed materials 
 Less efficient than other methods of DOE 
 Optimum can be missed 

Optimization 

TD  Using orthogonal array 
 Reducing number of runs significantly 
 Minimizing the operational time and cost 
 Applicable to industrial process 

 Cannot guarantee the determination of optimal 
conditions 

Optimization 
and Screening 

CCD  Rotatable 
 Estimate curvature 

 Moderate number of runs Optimization 

BBD  Rotatable (or nearly rotatable) 
 Small number of runs in relation to CCD 
 Estimate curvature 

 Less coverage than central composite Optimization 

DD  Smaller number of experiments in relation to 
CCD and BBD 

 Different number of levels for each factor 
 Displacement ability 

 Neither orthogonal nor rotatable Optimization 

3-FFD  Identification of main effect and the 
interaction of factors 

 Large number of runs, time, cost, and 
consumed material 

 Is not rotatable 

Optimization 

3-PFD  Smaller number of runs than 3-FFD for the 
equal number of factors 

 Is not rotatable 
 Effect of interaction of factors is limited 

Optimization 

DO  Applicable to any experimental region (such 
as irregular experimental region) 

 Applicable to combination of quantitative 
and qualitative factors 

  Number of experiments is lower than FFD 
and PFD 

 It does not always lead to a good design Optimization 

SM  The variables are not independent (total 
amount of  the factors must be 1) 

 Applicable to quantitative factors 

 Not very efficient for problems having 
multiple responses that need to be 
simultaneously optimized 

Optimization 
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ANN  Handling large amounts of data easily 
 Optimize several responses simultaneously 
 Suitable to optimize complex processes and 

all kinds of non-linear functions 

 Can be overtrained 
 Training process can be time consuming 
 It usually requires a lot of data 
 Selection of layers, neurons, activation 

function may be mistaken  

Optimization 

 
4. CONCLUSIONS 

The present review highlights the recent studies on 
experimental design approaches to hydrogen production by 
dark fermentation. The CCD, BBD, OFAT techniques for the 
optimization of the DFHP were extensively used. The 3-FFD 
and 3-PFD are not applied frequently, the application of which 
has been limited to the optimization of two factors. The papers 
on the ANN-GA, simplex, and D-optimal for the optimization 
of the DFHP are limited and no paper on the DD has been 
reported so far. Therefore, more studies covering these aspects 
are required. The ANN coupled with GA is a more suitable 
method than the RSM technique for the optimization of dark 
fermentation. The RMSE and the SEP for the ANN method 
were much smaller than those for the RSM, indicating that the 
ANN had a much higher modeling ability and accuracy than 
the RSM approach. Therefore, more research studies covering 
these aspects are required. Further comparative studies of 
these techniques are suggested. Most of the optimization 
studies presented here were carried out in the batch mode of 
operation. Thus, the DOE methods used to investigate the 
effect of the key factors on DFHP in both batch and 
continuous operations are recommended. 
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