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Abstract

Background and the purpose of the study: Modified androsterone derivatives are class of steroidal compounds
with potential anticancer properties. Various steroidal derivatives containing substitution at position 16 have shown
diversified pharmacological activities. In the present study, a new series of cytotoxic 16-(substituted benzylidene)
derivatives of dehydroepiandrosterone (DHEA) were synthesized and evaluated against three different cancer cell
lines.

Methods: The cytotoxic 16-(substituted benzylidene) derivatives of DHEA were synthesized via aldol condensation
of DHEA with corresponding benzaldehyde derivatives. The cytotoxic activity of synthesized derivatives was
evaluated against three different cancer cells including KB, T47D and SK-N-MC cell lines by MTT reduction
colorimetric assay.

Results: The results indicated that 16-(substituted benzylidene) derivatives of DHEA could be served as a potent
anti-cancer agent. The 3-cholro benzylidene derivatives of DHEA was the most potent synthesized derivative
especially against KB and T47D cell lines (IC50 values were 0.6 and 1.7 μM; respectively).

Conclusion: The cytotoxic potential of novel benzylidene derivatives of DHEA is mainly attributed to the position
and nature of the substituted group on the benzylidene pendant.
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Introduction
Steroidal derivatives are important class of synthetic and
naturally occurring compounds, which have exhibited
different biological properties [1-3] and attracted pro-
found attention for development of potent pharmaco-
logical agents for treatments of various diseases [4]
including: cardiovascular disease [5], adrenal insufficien-
cies [6], autoimmune disorders [7], fungal and microbial
infections [8,9]. Furthermore, different steroidal deriva-
tives have been considered as potent anti-cancer agents
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for the treatment of leukemia [4], breast cancer [10-12],
prostate cancer [13] and brain tumors [14].
Several natural and modified steroidal derivatives have

been previously described in the literatures as potent
cytotoxic agents [15-17]. In this regard, different deriva-
tives of androsterone (3α-hydroxy-5α-androstan-17-one)
have been excessively studied as potent anti-cancer
agents (Figure 1) [18,19]. Recently, the significant cyto-
toxic and aromatase inhibitory potential of a large num-
ber of androsterone derivatives containing substitution at
position 16 have been reported [12,20,21]. Bansal et. al
demonstrated the effectiveness of different 16E-
arylidenosteroids as potential anticancer and anti-
aromatase scaffold against estrogen-dependent breast
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Figure 1 Chemical structures of androsterone
and dehydroepiandrosterone.

Vosooghi et al. DARU Journal of Pharmaceutical Sciences 2013, 21:34 Page 2 of 7
http://www.darujps.com/content/21/1/34
cancer and different human tumor cell lines [12,20]. The
cytotoxic mechanistic study of α,β-unsaturated carbonyl
derivatives revealed that compounds containing de-
scribed functional group can cause alteration and mis-
folding of proteins through the formation of adducts with
reactive thiol groups of proteins [22]. For this reason, the
α-β unsaturated androstrone derivatives containing exo-
cyclic double bond at C16 position could be served as
potent chemotherapeutic agents. Dehydroepiandroster-
one (DHEA), also known as androstenolone (3β-
hydroxyandrost-5-en-17-one) is an androsterone deriva-
tive and important endogenous steroid hormone which
plays an important role as intermediate for biosynthesis
of androgens and estrogen hormones [23]. Apart from its
different biological potential, DHEA demonstrated
antiproliferative and antiapoptotic effects on different
cancer cell lines [24-26].
In the course of our ongoing study for the synthesis

and biological evaluation of potential anticancer agents
[27-34], herein, we investigate the synthesis and cyto-
toxic activity evaluation of a new series of 16-
(substituted benzylidene) derivatives of DHEA taking
into account the structural necessities for cytotoxic ac-
tivity of these derivatives. The aim of this study was to
investigate the structural requirements affecting the
cytotoxic potential of modified steroidal compounds.
Material and methods
Chemistry
All starting materials, reagents, and solvents were pre-
pared from Merck AG (Germany). Thin layer chroma-
tography (TLC) using various solvents of different
polarities was applied for determination of the purity of
the synthesized compounds. Melting points were de-
termined on a Kofler hot stage apparatus (Vienna,
Austria) and are uncorrected. 1H-NMR spectra were
recorded using a Bruker 400 spectrometer (Bruker,
Rheinstatten, Germany), and chemical shifts are
expressed as δ (ppm) with tetramethylsilane (TMS) as
internal standard. The IR spectra were recorded using a
Shimadzu 470 (Shimadzu, Tokyo, Japan) spectropho-
tometer (potassium bromide disks).The mass spectra
were recorded on a Finnigan TSQ-70 spectrometer
(Finnigan, USA) at 70 eV.

General procedure for the preparation of the (E)-16-
(substituted benzylidene) dehydroepiandrosterone
derivatives 1a-m using aldol Condensation
The appropriate aldehyde was added to a mixture of
DHEA (1.0 g, 3.47 mmol) and NaOH (1.75 g) in metha-
nol (20 ml). The reaction mixture was stirred for 1 h at
room temperature. The completion of reaction was con-
firmed using analytical thin layer chromatography. After
completion, the reaction mixture was poured into ice-
water. The final precipitate was filtered; washed with
cold water, dried under reduced pressure and crystallized
in methanol.

(E)-16-(2-Chlorobenzylidene)-1,3,4,7,8,9,10,11,12,13,15,16-
dodecahydro-3-hydroxy-10,13-dimethyl-2H-cyclopenta[a]
phenanthren-17(14H)-one (1a)
Yield: 23%; mp=213-214°C; IR (KBr, νmax, cm

-1): 3475
(OH), 1725(C=O).1HNMR (400 MHz, CDCl3): 1.00(s,
3H, CH3), 1.07 (s, 3H, CH3), 3.52-3.63(m, 1H, CH-OH),
5.40(s, 1H, Hvinyl), 7.28-7.32(m, 2H, Hphenyl), 7.42-7.46
(m, 1H, Hphenyl), 7.52-7.56(m,1H, Hphenyl). MS (EI) m/z
(%): 412 (M++2, 31), 410(M+, 100).

(E)-16-(3-Chlorobenzylidene)-1,3,4,7,8,9,10,11,12,13,15,16-
dodecahydro-3-hydroxy-10,13-dimethyl-2H-cyclopenta[a]
phenanthren-17(14H)-one (1b)
Yield: 30%; mp= 199-202°C; IR (KBr, νmax, cm

-1): 3219
(OH), 1708 (C=O).1HNMR (400 MHz, CDCl3): 0.99(s,
3H, CH3), 1.07(s, 3H, CH3), 3.48-3.60(m, 1H, CH-OH),
5.41(s, 1H, Hvinyl), 7.33-7.43(m, 4H, Hphenyl). MS (EI) m/
z (%): 412 (M++2, 5), 410 (M+, 15).

(E)-16-(4-Chlorobenzylidene)-1,3,4,7,8,9,10,11,12,13,15,16-
dodecahydro-3-hydroxy-10,13-dimethyl-2H-cyclopenta[a]
phenanthren-17(14H)-one (1c)
Yield: 27%; mp=229-231°C; IR (KBr, νmax, cm

-1): 3416
(OH), 1710(C=O). 1HNMR (400 MHz, CDCl3): 0.98(s,
3H, CH3), 1.07(s, 3H, CH3), 3.53-3.54(m, 1H, CH-OH),
5.40(s, 1H, Hvinyl), 7.39(dd, 1H, Hphenyl, J= 8.5Hz ),7.46
(dd, 1H, Hphenyl, J= 8.5Hz ). MS (EI) m/z (%): 412 (M+

+2, 10), 410 (M+, 28), 378(18), 351(4), 300(19), 268(10),
214(22), 150(100), 91(87), 79(100).

(E)-16-(2,4-Dichlorobenzylidene)-
1,3,4,7,8,9,10,11,12,13,15,16-dodecahydro-3-hydroxy-10,13-
dimethyl-2H-cyclopenta[a]phenanthren-17(14H)-one (1d)
Yield: 35%; mp=203-205°C; IR (KBr, νmax, cm

-1): 3472
(OH), 2929(CH aliphatic), 1710(C=O).1H-NMR (DMSO-



Vosooghi et al. DARU Journal of Pharmaceutical Sciences 2013, 21:34 Page 3 of 7
http://www.darujps.com/content/21/1/34
d6):
1HNMR (400 MHz, CDCl3): 1.03(s, 3H, CH3), 1.11

(s, 3H, CH3), 3.55-3.56(m, 1H, CH-OH), 5.40(s, 1H,
Hvinyl), 7.48-7.49(m, 2H, Hphenyl), 7.48(s, 1H, Hphenyl),
7.70-7.72(m, 1H, Hphenyl). MS (EI) m/z (%): 445(M+,10),
410(100), 343(18), 297(10), 213(11), 186(18), 105(9), 57
(18).
(E)-16-(4-Fluorobenzylidene)-1,3,4,7,8,9,10,11,12,13,15,16-
dodecahydro-3-hydroxy-10,13-dimethyl-2H-cyclopenta[a]
phenanthren-17(14H)-one (1e)
Yield: 46%; mp=234-236°C; IR (KBr, νmax, cm

-1): 3426
(OH), 1716(C=O). 1HNMR (400 MHz, CDCl3): 0.98(s,
3H, CH3), 1.07(s, 3H, CH3), 3.48-3.58(m, 1H, CH-OH),
5.40(s, 1H, Hvinyl), 7.10(t, 1H, Hphenyl, J= 8.5 Hz), 7.52(t,
1H, Hphenyl, J= 8.5Hz). MS (EI) m/z (%): 395(M+, 38),
377(10), 284(10), 232(32), 203(39), 145(25), 134(100),
109(25), 82(12).

(E)-16-(3-Bromobenzylidene)-1,3,4,7,8,9,10,11,12,13,15,16-
dodecahydro-3-hydroxy-10,13-dimethyl-2H-cyclopenta[a]
phenanthren-17(14H)-one (1f)
Yield: 28%; mp=222-234°C, IR (KBr, νmax, cm

-1): 3471
(OH), 1709 (C=O). 1HNMR (400 MHz, CDCl3):0.95(s,
3H, CH3), 1.04(s, 3H, CH3), 3.48-3.60( m, 1H, CH-OH),
5.40(s, 1H, HVinyl), 7.29(t, 1H, Hphenyl, J= 6.4Hz), 7.35(s,
1H, Hphenyl), 7.46(d, 1H, Hphenyl, J= 6.4Hz), 7.49(d, 1H,
Hphenyl, J= 6.4Hz). MS (EI) m/z (%): 456(M+, 26), 454(M
+, 26), 436(46), 424(32), 343(26), 315(18), 263(32), 213
(38).
(E)-16-(5-Bromo-2-hydroxybenzylidene)-
1,3,4,7,8,9,10,11,12,13,15,16-dodecahydro-3-hydroxy-10,13-
dimethyl-2H-cyclopenta[a]phenanthren-17(14H)-one (1g)
Yield: 46%; mp=208-210°C; IR (KBr, νmax, cm

-1): 3464
(OH), 1709(C=O). 1HNMR (400 MHz, CDCl3): 1.00(s,
3H, CH3), 1.07 (s, 3H, CH3), 3.42-3.60(m, 1H, CH-
OH),5.40(s, 1H, Hvinyl), 6.83(dd, 1H, Hphenyl, J= 8.4Hz),
7.32(dd, 1H, Hphenyl, J= 8.4Hz), 7.52(d, 1H, Hphenyl, J=
8.4Hz). MS (EI) m/z (%): 472 (M++2, 95), 470(M+, 95).
(E)-16-(2-(Trifluoromethyl)benzylidene)-
1,3,4,7,8,9,10,11,12,13,15,16-dodecahydro-3-hydroxy-10,13-
dimethyl-2H-cyclopenta[a]phenanthren-17(14H)-one (1h)
Yield: 34%; mp = 208-210°C; IR (KBr, νmax, cm-1):
3456(OH), 1724(C=O).1HNMR (400 MHz, CDCl3):
1.00(s, 3H, CH3), 1.06 (s, 3H, CH3), 3.48-3.60(m, 1H,
CH-OH), 5.38(s, 1H, Hvinyl), 7.42-48(m, 1H, Hphenyl)
7.56-7.60 (m, 2H, Hphenyl), 7.70-7.75(m, 2H, Hphenyl-
HVinyl ). MS (EI) m/z (%): 445 (M++1, 14), 444(M+,
100).
(E)-16-(4-(Trifluoromethyl)benzylidene)-
1,3,4,7,8,9,10,11,12,13,15,16-dodecahydro-3-hydroxy-10,13-
dimethyl-2H-cyclopenta[a]phenanthren-17(14H)-one (1i)
Yield: 27%; mp=244-246°C; IR (KBr, νmax, cm

-1): 3215
(OH), 1708(C=O). 1HNMR (400 MHz, CDCl3): 0.99(s,
3H, CH3), 1.08(s, 3H, CH3), 3.48-3.60(m, 1H, CH-OH),
7.40(s, 1H, Hvinyl), 7.38-7.46(m, 2H, Hphenyl), 7.64(dd,
2H, Hphenyl, J=8.8Hz). MS (EI) m/z (%): 445 (M++1, 21),
444(M+, 100).
(E)-16-(4-Methylbenzylidene)-1,3,4,7,8,9,10,11,12,13,15,16-
dodecahydro-3-hydroxy-10,13-dimethyl-2H-cyclopenta[a]
phenanthren-17(14H)-one (1j)
Yield: 78%; mp=238-240°C; IR (KBr, νmax, cm

-1): 3421
(OH), 1716(C=O). 1HNMR (400 MHz, CDCl3): 0.98(s,
3H, CH3), 1.07(s, 3H, CH3), 1.57(s, 3H, CH3), 3.45-3.50
(m, 1H, CH-OH), 5.42(s, 1H, Hvinyl), 7.25(dd, 1H,
HPhenyl, J=8.4Hz), 7.44(dd, 1H, HPhenyl, J=8.4 Hz). MS
(EI) m/z (%): 391 (M++1, 9), 390 (M+, 44), 376(4), 131
(100).
(E)-16-(4-Methoxybenzylidene)-1,3,4,7,8,9,10,11,12,13,15,16-
dodecahydro-3-hydroxy-10,13-dimethyl-2H-cyclopenta[a]
phenanthren-17(14H)-one(1k)
Yield: 25%; mp =225-227°C; IR (KBr, νmax, cm

-1): 3454
(OH), 1712(C=O). 1HNMR (400 MHz, CDCl3): 0.97(s,
3H, CH3), 1.07(s, 3H, CH3), 3.85(s, 3H, OCH3), 3.50-
3.60(m, 1H, CH-OH), 5.40(s, 1H, Hvinyl), 6.94(dd, 1H,
Hphenyl, J=8.4Hz), 7.40(s, 1H, Hvinyl), 7.51(dd, 1H, Hphenyl,
J=8.4Hz). MS (EI) m/z (%): 407(M++1, 7), 406(M+, 29),
408(100).
(E)-16-(2,3,4-Trimethoxybenzylidene)-
1,3,4,7,8,9,10,11,12,13,15,16-dodecahydro-3-hydroxy-10,13-
dimethyl-2H-cyclopenta[a]phenanthren-17(14H)-one (1l)
Yield: 20%; mp=199-201°C; IR (KBr, νmax, cm

-1): 3429
(OH), 1717(C=O).1HNMR (400 MHz, CDCl3): 0.98(s,
3H, CH3), 1.07(s, 3H, CH3), 3.90(s, 9H, 3OCH3), 5.39(s,
1H, Hvinyl), 6.72(d, 1H, HPhenyl, J=8.4Hz), 7.27(d, 1H,
HPhenyl, J=8.4Hz). MS (EI) m/z (%):467(M++1, 28), 466
(M+, 100).
(E)-16-(4-(Dimethylamino)benzylidene)-
1,3,4,7,8,9,10,11,12,13,15,16-dodecahydro-3-hydroxy-10,13-
dimethyl-2H-cyclopenta[a]phenanthren-17(14H)-one (1m)
Yield: 35%; mp=216-218°C; IR (KBr, νmax, cm

-1): 3521
(OH), 1721(C=O). 1HNMR (400 MHz, CDCl3): 0.96(s,
3H, CH3), 1.07(s, 3H, CH3), 3.03(s, 6H, 2CH3), 3.42-3.60
(m, 1H, CH-OH), 5.42(s, 1H, Hvinyl), 6.71(d, 1H, Hphenyl,
J= 8.3Hz), 7.47(d, 1H, Hphenyl, J= 8.3Hz). MS (EI) m/z
(%): 420(M++1, 32), 419(M+, 10).
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Biological assay
Cell lines and cell culture
The synthesized compounds were tested against three
different human cancer cell lines including KB (human
nasopharyngeal epidermoid carcinoma), T47D (human
breast cancer) and SK-N-MC (human neuroblastoma)
cells. The cell lines were purchased from the National
Cell Bank of Iran (NCBI). The cells were grown in
RPMI- 1640 medium (Gibco BRL) supplemented with
10% heat inactivated fetal calf serum (Gibco BRL), 100
μg/mL streptomycin, and 100 U/mL penicillin, in a hu-
midified air atmosphere at 37°C with 5% CO2.

In vitro cytotoxicity assay
The in vitro cytotoxic activity of each synthesized de-
rivatives 1a-m was investigated using MTT colorimetric
assay [35]. Briefly, each cell line in log-phase of growth
was harvested by trypsinization followed by resus-
pension in complete growth medium to give a total cell
count of 5×104 cells/ml. The resulted cell suspension
was seeded into the wells of 96-well plates (Nunc,
Denmark). The plates were incubated overnight in a
humidified air atmosphere at 37°C with 5% CO2. After
the incubation period, 5 μL of the media containing
various concentrations of the compounds was added
per well in triplicate followed by further incubation for
24 h. The final maximum concentration of DMSO was
0.1%. Etoposide was used as positive control for cyto-
toxic activity, while three different wells containing
evaluated cancer cells cultured in 200 μL of complete
medium were used as negative controls of cell viability.
After incubation, the medium was discarded and 200 μl
phenol red-free RPMI containing MTT (final concen-
tration 1 mg/ml), was added to each well. The test plate
was incubated for 4h. The culture medium was then re-
placed with 100 μL of DMSO and the absorbance of
each well was measured by using a micro plate reader
(Gen5, Power wave xs2, BioTek, America) at 492 nm.
Each set of experiments was independently performed
three times. The concentration causing 50% cell growth
Figure 2 Synthetic protocol for compounds 1a-m.
inhibition (IC50) compared with the control was calcu-
lated using concentration-response curves by regression
analysis.

Results and discussion
The benzylidene-substituted DHEA derivatives 1a-m
were synthesized through the aldol condensation [36] of
DHEA with corresponding benzaldehyde derivatives
(Figure 2).
The in vitro cytotoxic activity of synthesized com-

pounds 1a-m was investigated against three different
cancer cell lines including KB, T47D and SK-N-M cells.
The percentage of growth inhibition was assessed using
MTT reduction assay versus controls not treated with
test compounds. The 50% growth inhibitory concentra-
tion (IC50) for each compound was determined and
presented in Table 1. The data for etoposide was also
included.
The results of cytotoxic data indicate that most of syn-

thesized compounds showed moderate to strong cyto-
toxic potential in all three cell lines. Based on the
cytotoxic data, the following structure-activity relation-
ship may be developed:

– Introduction of different substitutes such as
chlorine, trifluoromethyl, methoxy and methyl
groups into the ortho or meta position of
benzylidene moiety, resulted in enhanced
cytotoxic potential of benzylidene derivatives of
DHEA.

– The compounds containing chlorine, nitro and
fluorine substitutes at para position of benzylidene
pendant, were almost inactive against all three
evaluated cell lines (IC50>100 μM). Whereas,
substitution of methoxy, methyl and
trifluoromethyl groups into the para position
(compounds 1i-j), resulted in enhanced cytotoxic
potential of corresponding derivatives, e.g. the
corresponding IC50 values of para-methyl



Table 1 Chemical structures and in vitro cytotoxic activity
of compounds 1a-m assessed by MTT reduction assay

IC50 (μM)a

Compound Ar KB T47D SK-N-MC

1a 2.9(±10.1) 9.6 ±3.1 13.2± 2.2

1b 0.6(±2.0) 1.7±14.8 10.0± 3

1c >100 >100 >100

1d >100 >100 3.6±13.26

1e >100 >100 >100

1f 6.5(±21.1) >100 3.6±40.7

1g >100 >100 16.3(±55.9)

1h 1.2(±3.3) 3.6(±7.3) 2.7(±3.6)

Table 1 Chemical structures and in vitro cytotoxic activity
of compounds 1a-m assessed by MTT reduction assay
(Continued)

1i 2.5(±8.3) 2.4(±9.6) 2.0(±5.3)

1j 1.7(±12.5) 7.6(±17.4) 1.0(±17.4)

1k 1.3(±18) 4.1(±12.3) 5.9(±14.1)

1l >100 >100 >100

1m >100 >100 >100

Etoposide - 2.8(±16.8) 1.2(±8) 3.9(±8.3)
a Values in parentheses represent the average of 3–4 experiments ± S.E.M.
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benzylidene derivative 1j in KB, T47D and SK-N
-MC cell lines were 1.7, 7.6 and 1.0 μM,
respectively.

– The 3-chloro benzylidene derivatives of DHEA,
compound 1b, was the most potent synthesized
derivative especially against KB and T47D cell lines
(IC50 values were 0.6 and 1.7 μM; respectively)
which were comparable with etoposide (IC50= 2.8
and 1.2 μM; respectively).

Based on the above finding it might be deduced that
16-(substituted benzylidene) derivatives of DHEA
could be served as a potent anti-cancer agents. The
cytotoxic potential of described compounds is mainly
attributed to the position and nature of the substituted
group on the benzylidene pendant. The ortho or meta
positions of the benzylidene group could well accom-
modate different substitute in order to afford potent
cytotoxic derivatives of this types.
Conclusion
A new series of cytotoxic 16-(substituted benzylidene)
derivatives of DHEA were synthesized and evaluated
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against three different cancer cells including KB, T47D
and SK-N-MC cell lines by MTT reduction colorimetric
assay. The cytotoxic potential of these novel benzylidene
derivatives of DHEA is mainly attributed to the position
and nature of the substituted group on the benzylidene
pendant.
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